International Journal of Advanced Research in Engineering and Technology (IJARET)

Volume 10, Issue 2, March - April 2019, pp. 350-361, Article ID: IJARET_10_02_034 Available online at http://www.iaeme.com/IJARET/issues.asp?JType=IJARET&VType=10&IType=02 ISSN Print: 0976-6480 and ISSN Online: 0976-6499 © IAEME Publication

FUZZY IDEALS AND FUZZY DOT IDEALS ON BH-ALGEBRAS

K. Anitha

Research Scholar,
PG and Research Department of Mathematics,
Saiva Bhanu Kshatriya College,
Aruppukottai - 626 101, Tamil Nadu, India

Dr. N. Kandaraj

Associate Professor,
PG and Research Department of Mathematics,
Saiva Bhanu Kshatriya College,
Aruppukottai - 626 101, Tamil Nadu, India

ABSTRACT

In this paper we introduce the notions of Fuzzy Ideals in BH-algebras and the notion of fuzzy dot Ideals of BH-algebras and investigate some of their results.

Keywords: BH-algebras, BH- Ideals, Fuzzy Dot BH-ideal.

Cite this Article: K. Anitha and Dr. N. Kandaraj, Fuzzy Ideals and Fuzzy Dot Ideals on Bh-Algebras, *International Journal of Advanced Research in Engineering and Technology*, 10(2), 2019, pp 350-361.

http://www.iaeme.com/IJARET/issues.asp?JType=IJARET&VType=10&IType=2

Subject Classification: AMS (2000), 06F35, 03G25, 06D99, 03B47

1 INTRODUCTION

Y. Imai and K. Iseki [1, 2, and 3] introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. K. Iseki and S. Tanaka, [7] are introduced Ideal theory of BCK-algebras P. Bhattacharya, N.P. Mukherjee and L.A. Zadeh [4] are introduced fuzzy relations and fuzzy groups. The notion of BH-algebras is introduced by Y. B Jun, E. H. Roh and H. S. Kim[9] Since then, several authors have studied BH-algebras. In particular, Q. Zhang, E. H. Roh and Y. B. Jun [10] studied the fuzzy theory in BH-algebras. L.A. Zadeh [6] introduced notion of fuzzy sets and A. Rosenfeld [8] introduced the notion of fuzzy group. O.G. Xi [5] introduced the notion of fuzzy BCK-algebras. After that, Y.B. Jun and J. Meng [10] studied Characterization of fuzzy sub algebras by their level sub algebras on BCK-algebras. J. Neggers and H. S. Kim[11] introduced on *d*-algebras, M. Akram [12] introduced on fuzzy *d*-algebras In this paper we classify the notion of Fuzzy Ideals on BH – algebras and the notion of Fuzzy dot

Ideals on BH – algebras. And then we investigate several basic properties which are related to fuzzy BH-ideals and fuzzy dot BH- ideals

2 PRELIMINARIES

In this section we cite the fundamental definitions that will be used in the sequel:

Definition 2.1 [1, 2, 3]

Let X be a nonempty set with a binary operation * and a constant 0. Then (X, *, 0) is called a BCK-algebra if it satisfies the following conditions

$$1. ((x * y) * (x * z)) * (z * y) = 0$$

$$2.(x * (x * y)) * y = 0$$

$$3.x * x = 0$$

$$4. x * y = 0, y * x = 0 \Rightarrow x = y$$

$$5.0 * x = 0$$
 for all $x, y, z \in X$

Definition 2.2 [1, 2, 3]

Let X be a BCK-algebra and I be a subset of X, then I is called an ideal of X if

(I1)
$$0 \in I$$

(I2)
$$y$$
 and $x * y \in I \Rightarrow x \in I$ for all $x, y \in I$

Definition 2.3 [9, 10]

A nonempty set X with a constant 0 and a binary operation * is called a BH-algebra, if it satisfies the following axioms

(BH1)
$$x * x = 0$$

$$(BH2) x * 0 = 0$$

(BH3)
$$x * y = 0$$
 and $y * x = 0 \Rightarrow x = y$ for all $x, y \in X$

Example 2.4

Let $X = \{0, 1, 2\}$ be a set with the following cayley table

*	0	1	2
0	0	1	1
1	1	0	1
2	2	1	0

Then (X, *, 0) is a BH-algebra

Definition 2.5[9, 10]

Let X be a BH-algebra and I be a subset of X, then I is called an ideal of X if

(BHI2)
$$y$$
 and $x * y \in I \Rightarrow x \in I$

(BHI3)
$$x \in I$$
 and $y \in X \Rightarrow x * y \in I$ for all $x, y \in I$

A mapping $f: X \to Y$ of BH-algebras is called a homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$. Note that if $f: X \to Y$ is homomorphism of BH-algebras, Then f(0) = 0. We now review some fuzzy logic concepts. A fuzzy subset of a set X is a function $\mu: X \to [0, 1]$. For a fuzzy subset μ of X and $t \in [0, 1]$, define U (μ ; t) to be the set U (μ ; t) = $\{x \in X \mid \mu(x) \geq t\}$. For any fuzzy subsets μ and ν of a set X, we define

$$(\mu \cap \nu)(x) = min\{\mu(x), \nu(x)\} \text{ for all } x \in X.$$

Let $f: X \to Y$ be a function from a set X to a set Y and let μ be a fuzzy subset of X. The

fuzzy subset v of Y defined by
$$v(y) = \begin{cases} \sup \mu(x) & \text{if } f^{-1}(y) \neq \emptyset, \quad \forall y \in Y \\ \sup_{x \in f^{-1}(y)} & 0 & \text{otherwise} \end{cases}$$

is called the image of μ under f, denoted by $f(\mu)$. If ν is a fuzzy subset of Y, the fuzzy subset μ of X given by $\mu(x) = \nu(f(x))$ for all $x \in X$ is called the Preimage of ν under f and is denoted by $f^{-1}(\nu)$. A fuzzy subset μ in X has the sup property if for any $T \subseteq X$ there exists $x_0 \in T$ such that $\mu(x_0) = \sup_{x \in f^{-1}(\nu)} \mu(z)$. A fuzzy relation μ on a set X is a fuzzy subset of $X \times X$,

that is, a map $\mu : X \times X \rightarrow [0, 1]$.

Definition 2.6[4, 6, 8]

Let X be a nonempty set. A fuzzy (sub) set μ of the set X is a mapping $\mu: X \to [0,1]$

Definition 2.7[4, 6, 8]

Let μ be the fuzzy set of a set X. For a fixed $s \in [0,1]$, the set $\mu_s = \{x \in X : \mu(x) \ge s\}$ is called an upper level of μ or level subset of μ

Definition 2.8[5, 7]

A fuzzy set μ in X is called fuzzy BCK-ideal of X if it satisfies the following inequalities

$$1.\mu(0) \ge \mu(x)$$

$$2. \mu(x) \ge \min\{\mu(x * y), \mu(y)\}$$

Definition 2.9 [11]

Let X be a nonempty set with a binary operation * and a constant 0. Then (X, *, 0) is called a d - algebra if it satisfies the following axioms.

$$1.x * x = 0$$

$$2.0 * x = 0$$

3.
$$x * y = 0$$
, $y * x = 0 \Rightarrow x = y$ for all $x, y \in X$

Definition 2.10 [12]

A fuzzy set μ in X is called fuzzy d-ideal of X if it satisfies the following inequalities

$$\operatorname{Fd1.}\mu(0) \ge \mu(x)$$

$$\operatorname{Fd2}\mu(x) \ge \min\{\mu(x * y), \mu(y)\}\$$

Fd3.
$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\}\$$
 For all $x, y \in X$

Definition 2.11[12] A fuzzy subset μ of X is called a fuzzy dot d-ideal of X if it satisfies The following conditions:

1.
$$\mu(0) \ge \mu(x)$$

$$2. \mu(x) \ge \mu(x * y) . \mu(y)$$

3.
$$\mu(x * y) \ge \mu(x)$$
. $\mu(y)$ for all $x, y \in X$

3. FUZZY IDEALS ON BH-ALGEBRAS

Definition 3.1

A fuzzy set μ in X is called fuzzy BH-ideal of X if it satisfies the following inequalities $1.\mu(0) \ge \mu(x)$

352

$$2. \mu(x) \ge \min\{\mu(x * y), \mu(y)\}$$

3.
$$\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$$
 for all $x, y \in X$

Example 3.2

Let $X = \{0, 1, 2, 3\}$ be a set with the following cayley table

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	2	0	0
3	3	3	3	0

Then (X, *, 0) is not BCK-algebra. Since $\{(1*3)*(1*2)\}*(2*3) = 1 \neq 0$

We define fuzzy set μ in X by $\mu(0) = 0.8$ and $\mu(x) = 0.01$ for all $x \neq 0$ in X. then it is easy to show that μ is a BH-ideal of X.

We can easily observe the following propositions

- 1. In a BH-algebra every fuzzy BH-ideal is a fuzzy BCK-ideal, and every fuzzy BCK-ideal is a fuzzy BH -Sub algebra
- 2. Every fuzzy BH-ideal of a BH- algebra is a fuzzy BH-subalgebra.

Example 3.3

Let $X = \{0, 1, 2\}$ be a set given by the following cayley table

*	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Then (X, *, 0) is a fuzzy BCK-algebra. We define fuzzy set μ in X by $\mu(0) = 0.7, \mu(1) = 0.5, \mu(2) = 0.2$

Then μ is a fuzzy BH-ideal of X.

Definition 3.4

Let λ and μ be the fuzzy sets in a set X. The Cartesian product $\lambda \times \mu: X \times X \to [0,1]$ is defined by $(\lambda \times \mu)(x,y) = \min\{\lambda(x), \mu(y)\} \ \forall x,y \in X$.

Theorem 3.5

If λ and μ be the fuzzy BH-ideals of a BH- algebra X, then $\lambda \times \mu$ is a fuzzy BH-ideals of $X \times X$

Proof

For any
$$(x, y) \in X \times X$$
, we have

$$(\lambda \times \mu)(0,0) = \min \{\lambda(0), \mu(0)\} \ge \min \{\lambda(x), \mu(y)\}$$
$$= (\lambda \times \mu)(x,y)$$

That is
$$(\lambda \times \mu)(0,0) = (\lambda \times \mu)(x,y)$$

Let
$$(x_1, x_2)$$
 and $(y_1, y_2) \in X \times X$

Then,
$$(\lambda \times \mu)(x_1, x_2) = min\{\lambda(x_1), \mu(x_2)\}$$

$$\geq \min \{ \min \{ \lambda(x_1 * y_1), \lambda(y_1) \}, \min \{ \mu(x_2 * y_2), \mu(y_2) \} \}$$

=
$$\min\{\min \lambda(x_1 * y_1), \mu(x_2 * y_2), \min \{\lambda(y_1), \mu(y_2)\}\}$$

= min
$$\{(\lambda \times \mu) (x_1 * y_1, x_2 * y_2)\}$$
, $(\lambda \times \mu) (y_1, y_2)\}$

= min {((
$$\lambda \times \mu$$
) (x_1, x_2) * (y_1, y_2)), ($\lambda \times \mu$) (y_1, y_2)}

That is
$$((\lambda \times \mu) (x_1, x_2)) = \min \{(\lambda \times \mu) (x_1, x_2) * (y_1, y_2)\}, (\lambda \times \mu) (y_1, y_2)\}$$

And
$$(\lambda \times \mu)((x_1, x_2) * (y_1, y_2))$$

$$= (\lambda \times \mu) (x_1 * y_1, x_2 * y_2)$$

=
$$\min\{\lambda(x_1 * y_1), \mu(x_2 * y_2)\}$$

 $\geq \min \{ \min \{ \lambda(x_1), \lambda(y_1) \}, \min \{ \mu(x_2), \mu(y_2) \} \}$

$$= \min \left\{ \min \left(\lambda \left(x_1 \right), \mu(x_2), \min \left\{ \left(\lambda \left(y_1 \right), \mu(y_2) \right) \right\} \right.$$

$$= \min \{(\lambda \times \mu)((x_1, x_2), (\lambda \times \mu)(y_1, y_2))\}$$

That is
$$(\lambda \times \mu)((x_1, x_2) * (y_1, y_2))$$

$$= \min \{ (\lambda \times \mu)((x_1, x_2), (\lambda \times \mu)(y_1, y_2) \}$$

Hence $\lambda \times \mu$ is a fuzzy BH-ideal of $X \times X$

Theorem 3.6

Let λ and μ be fuzzy sets in a BH-algebra such that $\lambda \times \mu$ is a fuzzy BH-ideal of $X \times X$. Then

i)Either
$$\lambda(0) \ge \lambda(x)$$
 or $\mu(0) \ge \mu(x) \ \forall x \in X$.

ii) If
$$\lambda(0) \ge \lambda(x) \ \forall x \in X$$
, then either $\mu(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x)$

iii) If
$$\mu(0) \ge \mu(x) \ \forall x \in X$$
, then either $\lambda(0) \ge \lambda(x)$ or $\lambda(0) \ge \mu(x)$

Proof

We use reduction to absurdity

i) Assume $\lambda(x) > \lambda$ (0) and $\mu(x) \ge \mu(0)$ for some $x, y \in X$.

Then
$$(\lambda \times \mu)(x, y) = \min{\{\lambda(x), \mu(y)\}}$$

$$> \min \{\{\lambda(0), \mu(0)\}$$

$$=(\lambda \times \mu)(0,0)$$

$$(\lambda \times \mu)(x,y) > (\lambda \times \mu)(0,0) \ \forall x,y \in X$$

Which is a contradiction to $(\lambda \times \mu)$ is a fuzzy BH-ideal of $X \times X$

Therefore either $\lambda(0) \ge \lambda(x)$ or $\mu(0) \ge \mu(x) \ \forall x \in X$.

ii) Assume $\mu(0) < \lambda(x)$ and $\mu(0) < \mu(y)$ for some $x, y \in X$.

Then
$$(\lambda \times \mu)(0,0) = \min{\{\lambda(0), \mu(0)\}} = \mu(0)$$

And
$$(\lambda \times \mu)(x, y) = \min\{\lambda(x), \mu(y)\} > \mu(0)$$

$$=(\lambda \times \mu)(0,0)$$

This implies $(\lambda \times \mu)(x, y) >$ and $(\lambda \times \mu)(0, 0)$

Which is a contradiction to $\lambda \times \mu$ is a fuzzy BH-ideal of $X \times X$

Hence if $\lambda(0) \ge \lambda(x) \forall x \in X$, then

Either
$$\mu(0) \ge \lambda(x)$$
 or $\mu(0) \ge \mu(x) \ \forall x \in X$

iii) Assume
$$\lambda$$
 (0)< λ (x) or λ (0)< μ (y) $\forall x, y \in X$

Then
$$((\lambda \times \mu)(0, 0) = \min{\{\lambda(0), \mu(0)\}} = \lambda(0)$$

And
$$(\lambda \times \mu)(x, y) = \min\{\lambda(x), \mu(y)\} > \lambda(0)$$

$$=(\lambda \times \mu)(0,0)$$

This implies $(\lambda \times \mu)(x,y) > (\lambda \times \mu)(0,0)$

Which is a contradiction to $(\lambda \times \mu)$ is a fuzzy BH-ideal of $X \times X$

Hence if $\mu(0) \ge \mu(x) \quad \forall x \in X$ then either $\lambda(0) \ge \lambda(x)$ or $\lambda(0) \ge \mu(x)$

This completes the proof

Theorem 3.7

If $\lambda \times \mu$ is a fuzzy BH-idela of $X \times X$ then λ or μ is a fuzzy BH-ideal of X.

Proof

First we prove that μ is a fuzzy BH-ideal of X.

Given $\lambda \times \mu$ is a fuzzy BH-ideal of $X \times X$, then by theorem 3.6(i), either λ (0) $\geq \lambda$ (x) or μ (0) $\geq \mu(x) \forall x \in X$.

Let
$$\mu(0) \ge \mu(x)$$

By theorem 3.6(iii) then either $\lambda(0) \ge \lambda(x)$ or $\lambda(0) \ge \mu(x)$

Now
$$\mu(x) = \min\{\lambda(0), \mu(x)\}\$$

= $(\lambda \times \mu)(0, x)$

$$\geq \min \left\{ ((\lambda \times \mu)(0,x) * (0,y)), (\lambda \times \mu)(0,y) \right\}$$

$$= \min \{ (\lambda \times \mu)(0*0), x*y), (\lambda \times \mu)(0,y) \}$$

$$= \min \{ (\lambda \times \mu)(0, x * y), (\lambda \times \mu)(0, y) \}$$

$$= \min \{ (\lambda \times \mu)(0*0), x*y), (\lambda \times \mu)(0,y) \}$$

$$= \min \{ \mu(x * y), (\mu)(y) \}$$

That is $\mu(x) \ge \min \{ \mu(x * y), \mu(y) \}$

$$\mu(x * y) = \min \{ \lambda(0), \mu(x * y) \}$$

$$=(\lambda \times \mu)(0,x*y)$$

$$=(\lambda\times\mu)(0*0,x*y)$$

$$=(\lambda \times \mu)(0,x)*(0,y)$$

$$\mu(x * y) \ge \min \{ (\lambda \times \mu)(0, x), (\lambda \times \mu)(0, y) \}$$

= \min\{\mu(x), \mu(y)\}

That is,
$$\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$$

This proves that μ is a fuzzy BH-ideal of X.

Secondly to prove that λ is a Fuzzy BH-ideal of X.

Using theorem 4.6(i) and (ii) we get

This completes the proof.

Theorem 3.8

If μ is a fuzzy BH-idela of X, then μ_t is a BH-idela of X for all $t \in [0,1]$

Proof

Let μ be a fuzzy BH-ideal of X,

Then By the definition of BH-ideal

$$\mu(0) \ge \mu(x)$$

355

$$\mu(x) \ge \min \{ \mu(x * y), (\mu(y)) \}$$

$$\mu(x * y) \ge \min \{ \mu(x), (\mu(y)) \mid \forall x, y \in X \}$$

To prove that μ_t is a BH-ideal of x.

By the definition of level subset of μ

$$\mu_t = \{ x / \mu(x) \ge t \}$$

Let $x, y \in \mu_t$ and μ is a fuzzy BH-ideal of X.

Since $\mu(0) \ge \mu(x) \ge t$ implies $0 \in \mu_t$, for all $t \in [0,1]$

Let $x, y \in \mu_t$ and $y \in \mu_t$

Therefore $\mu(x * y) \ge t$ and $\mu(y) \ge t$

Now $\mu(x) \ge \min \{ \mu(x * y), (\mu(y)) \}$

```
\geq \min\{t,t\} \geq t
    Hence (\mu(x) \ge t)
    That is x \in \mu_t.
    Let x \in \mu_t, y \in X
    Choose y in X such that \mu(y) \ge t
     Since x \in \mu_t implies \mu(x) \ge t
     We know that \mu(x * y) \ge \min \{ \mu(x), (\mu(y)) \}
                                   \geq \min\{t, t\}
                                   \geq t
     That is
                       \mu(x * y) \ge t \text{ implies } x * y \in \mu_t
    Hence \mu_t is a BH-ideal of X.
     Theorem 3.9
    If X be a BH-algebra, \forall t \in [0,1] and \mu_t is a BH -ideal of X, then \mu is a fuzzy BH-ideal of
X.
    Proof
    Since \mu_t is a BH –ideal of X
    0 \in \mu_t
    ii) x * y \in \mu_t And y \in \mu_t implies x \in \mu_t
    iii)x \in \mu_t, y \in X implies x * y \in \mu_t
    To prove that \mu is a fuzzy BH-ideal of X.
    Let x, y \in \mu_t then \mu(x) \ge t and \mu(y) \ge t
    Let \mu(x) = t_1 and \mu(y) = t_2
    Without loss of generality let t_1 \le t_2
    Then x \in \mu_{t_1}
    Now x \in \mu_{t_1} and y \in X implies x * y \in \mu_{t_1}
    That is \mu(x * y) \ge t_1
                           = \min \{t_1, t_2\}
                           = \min \{ \mu(x), \mu(y) \}
                \mu(x * y) \ge \min \{ \mu(x), \mu(y) \}
     ii) Let \mu(0) = \mu(x * x) \ge \min \{ \mu(x), \mu(y) \} \ge \mu(x) (by proof (i))
    That is \mu(0) \ge \mu(x) for all x \in X
    iii) Let \mu(x) = \mu(x * y) * (0 * y)
                    \geq \min\{\mu(x*y), \mu(0*y)\} (By (i))
                    \geq \min\{\mu(x * y), \min\{\mu(0), \mu(y)\}\}
                    \geq \min\{\mu(x * y), \{\mu(y)\} \text{ (By (ii))}\}
          \mu(x) \geq \min\{\mu(x * y), \{\mu(y)\}\}
```

Definition 3.10

A fuzzy set μ in X is said to be fuzzy BH- χ ideal if $\mu(x * u * v * y) \ge \min \{ \mu(x), \mu(y) \}$

Hence μ is a fuzzy BH-ideal of X.

Theorem 3.11

Every Fuzzy BH -ideal is a fuzzy BH- x- ideal

Proof

It is trivial

Remark

Converse of the above theorem is not true. That is every fuzzy BH- χ -ideal is not true. That is every fuzzy BH -ideal. Let us prove this by an example

Let $X = \{0, 1, 2\}$ be a set given by the following cayley table

*	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

Then (X, *, 0) is a BH-algebra. We define fuzzy set: $X \rightarrow [0,1]$ by $\mu(0) = 0.8, \mu(x) = 0.2 \ \forall x \neq 0$ clearly μ is a fuzzy BH-ideal of X But μ is not a BH- χ -ideal of X.

For Let
$$x = 0$$
 $u = 1$ $v = 1$ $y = 1$

$$\mu(x * u * v * y = \mu(0 * 1 * 1 * 1) = \mu(1) = 0.2$$

$$\min\{ \mu(x), \mu(y) \} = \min\{ \mu(0), \mu(0) \}$$

$$= \mu(0) = 0.8$$

$$\mu(x * u * v * y) \le \min\{ \mu(x), \mu(y) \}$$
Hence μ is not a fuzzy BH- χ -ideal of X .

And
$$\mu(x * y) = \mu(f(a) * f(b))$$

$$\ge \mu(f(a * b))$$

$$= \mu^f(a * b)$$

$$\ge \min\{ \mu^f(a), \mu^f(b) \}$$

$$= \min\{ \mu(f(a), \mu(f(b)) \}$$

$$= \min\{ \mu(x), \mu(y) \}$$

Hence $\mu(x * y) \ge \min{\{\mu(x), \mu(y)\}}$

Hence μ is a fuzzy BH- χ ideal of Y.

4. FUZZY DOT BH-IDEALS OF BH-ALGEBRAS

Definition 4.1. A fuzzy subset μ of X is called a fuzzy dot BH-ideal of X if it satisfies

The following conditions:

(FBH1).
$$\mu(0) \ge \mu(x)$$

(FBH2). $\mu(x) \ge \mu(x * y) \cdot \mu(y)$
(FBH3). $\mu(x * y) \ge \mu(x) \cdot \mu(y)$ for all $x, y \in X$

Example 4.2. Let $X = \{0, 1, 2, 3\}$ be a *BH*-algebra with Cayley table (Table 1) as follows:

(Table 1)

*	0	1	2	3
0	0	0	0	0
1	1	0	0	2
2	2	2	0	0
3	3	3	3	0

Define $\mu: X \to [0,1]$ by $\mu(0) = 0.9$, $\mu(a) = \mu(b) = 0.6$, $\mu(c) = 0.3$. It is easy to verify that μ is a Fuzzy dot *BH*-ideal of *X*.

Proposition 4.3. Every fuzzy *BH*-ideal is a fuzzy dot *BH*-ideal of a *BH*-algebra.

Remark. The converse of Proposition 4.3 is not true as shown in the following Example 4.2. Let $X = \{0, 1, 2, 3\}$ be a *BH*-algebra with Cayley table (Table 1) as follows:

Example 4.4. Let $X = \{0,1,2\}$ be a *BH*-algebra with Cayley table (Table 2) as follows:

(Table 2)

*	0	1	2
0	0	0	0
1	1	0	2
2	2	1	0

Define μ : $X \to [0, 1]$ by μ (0) =0.8, μ (1) = 0.5, μ (2) =0.4. It is easy to verify that μ is a fuzzy Dot *BH*-ideal of *X*, but not a fuzzy *d*-ideal of *X* because

$$\mu(x) \le \min\{\mu(x * y), \mu(y)\}\$$

 $\mu(1) = \min\{\mu(1 * 2), \mu(2)\}\$
 $= \mu(2)$

Proposition 4.5. Every fuzzy dot *BH*-ideal of a *BH*-algebra *X* is a fuzzy dot subalgebra of *X*.

Remark. The converse of Proposition 4.5 is not true as shown in the following Example:

Example 4.6. Let *X* be the BH-algebra in Example 4.4 and define μ : $X \to [0, 1]$ by $\mu(0) = \mu(1) = 0.9$, $\mu(2) = 0.7$. It is easy to verify that μ is a fuzzy dot sub algebra of *X*, but not a fuzzy dot *BH*-ideal of *X* because $\mu(2) = 0.7 \le 0.81 = \mu(2 * 1) \cdot \mu(1)$.

Proposition 4.7. If μ and ν are fuzzy dot BH-ideals of a BH-algebra X, then so is $\mu \cap \nu$. Proof. Let $x, y \in X$. Then

$$(\mu \cap \nu)(0) = \min \{\mu(0), \nu(0)\}$$

$$\geq \min \{\mu(x), \nu(x)\}$$

$$= (\mu \cap \nu)(x).$$
Also, $(\mu \cap \nu)(x) = \min \{\mu(x), \nu(x)\}$

$$\geq \min \{\mu(x * y) \cdot \mu(y), \nu(x * y) \cdot \nu(y)\}$$

$$\geq (\min \{\mu(x * y), \nu(x * y)\}) \cdot (\min \{\mu(y), \nu(y)\})$$

$$= ((\mu \cap \nu)(x * y)) \cdot ((\mu \cap \nu)(y)).$$

$$And, (\mu \cap \nu)(x * y) = \min \{\mu(x * y), \nu(x * y)\}$$

$$\geq \min \{\mu(x) \cdot \mu(y), \nu(x) \cdot \nu(y)\}$$

$$\geq (\min \{\mu(x), \nu(x)\}) \cdot (\min \{\mu(y), \nu(y)\})$$

$$= ((\mu \cap \nu)(x)) \cdot ((\mu \cap \nu)(y)).$$

Hence $\mu \cap \nu$ is a fuzzy dot *BH*-ideal of a *d*-algebra *X*.

Theorem 4.8. If each nonempty level subset $U(\mu; t)$ of μ is a fuzzy BH-ideal of X then μ is a fuzzy dot BH-ideal of X, where $t \in [0, 1]$.

Definition 4.9

Let σ be a fuzzy subset of X. The strongest fuzzy σ -relation on BH-algebra X is the fuzzy subset μ_{σ} of $X \times X$ given by $\mu_{\sigma}(x,y) = \sigma(x) \cdot \sigma(y)$ for all $x,y \in X$. A fuzzy relation μ on BH-algebra X is called a Fuzzy σ -product relation if $\mu(x,y) \geq \sigma(x) \cdot \sigma(y)$ for all $x,y \in X$. A fuzzy relation μ on BH-algebra is called a left fuzzy relation on σ if $\mu(x,y) = \sigma(x)$ for all $x,y \in X$.

Note that a left fuzzy relation on σ is a fuzzy σ -product relation.

Remark. The converse of Theorem 4.8 is not true as shown in the following example:

Example 4.10. Let *X* be the *BH*-algebra in Example 4.4 and define μ : $X \rightarrow [0, 1]$ by μ (0)=0.6, μ (1)=0.7, μ (2)= 0.8. We know that μ is a fuzzy dot *BH*-ideal of *X*, but $U(\mu; 0.8) = \{x \in X \mid \mu(x) \ge 0.8\} = \{2, 2\}$ is not *BH*-ideal of *X* since $0 \notin U(\mu; 0.8)$.

Theorem 4.11. Let $f: X \to X'$ be an onto homomorphism of *BH*-algebras, v be a fuzzy Dot BH-ideal of Y. Then the Preimage $f^{-1}(v)$ of v under f is a fuzzy dot *BH*-ideal of X.

Proof. Let $x \in X$,

$$f^{-1}(v)(0) = v(f(0)) = v(0')$$

$$\geq v(f(x)) = f^{-1}(v)(x)$$

For any $x, y \in X$, we have

$$f^{-1}(v)(x) = v (f(x)) \ge v (f(x) * f(y)) \cdot v (f(y))$$

= $v (f(x * y)) \cdot v (f(y)) = f^{-1}(v)(x * y).f^{-1}(v)(y)$

Also,

$$f^{-1}(v)(x * y) = v (f (x * y)) = v (f (x) * f (y))$$

$$\geq v (f (x)) \cdot v(f (y)) = f^{-1}(v)(x). f^{-1}(v)(y)$$

Thus $f^{-1}(v)$ is a fuzzy dot *BH*-ideal of *X*.

Theorem: 4.12 An onto homomorphic image of a fuzzy dot *BH*-ideal with the sup Property is a fuzzy dot *BH*-ideal.

Theorem 4.13. If λ and μ are fuzzy dot *BH*-ideal of a *BH*-algebra *X*, then $\lambda \times \mu$ is a fuzzy Dot *BH*-ideal of $X \times X$.

Proof.

Let
$$x, y \in X$$

 $\lambda \times \mu (0,0) = \lambda(0), \mu(0)$
 $\geq \lambda(x).\mu(y) = (\lambda \times \mu) (x, y)$
For any $x, x', y, y' \in X$ wehave
 $(\lambda \times \mu) (x, y) = \lambda(x).\mu(y)$
 $\geq \lambda(x * x').\lambda(x'))\mu(y * y').\mu(y')$
 $= \lambda(x * x').\mu(y * y').\lambda(x').\mu(y')$
 $= (\lambda \times \mu)(x, y) * (x', y')).(\lambda \times \mu)(x', y')$
Also $(\lambda \times \mu)(x, y) * (x', y')) = (\lambda \times \mu)(x * x') * (y * y')).$
 $= \lambda(x * x').\mu(y * y')$
 $\geq \lambda(x).\lambda(x').(\mu(y).\mu(y'))$
 $(\lambda(x).\mu(y)).(\lambda(x').\mu(y'))$
 $= (\lambda \times \mu)(x, y).(\lambda \times \mu)(x', y')$

Hence $\lambda \times \mu$ is a fuzzy dot *BH*-ideal of $X \times X$.

Theorem 4.14. Let σ be a fuzzy subset of a *BH*-algebra X and μ_{σ} be the strongest fuzzy σ -relation on *BH*-algebra X. Then σ is a fuzzy dot *BH*-ideal of X if and only if μ_{σ} is a Fuzzy dot *BH*-ideal of $X \times X$.

Proof. Assume that σ is a fuzzy dot BH-ideal of X. For any $x, y \in X$ we have

$$\mu_{\sigma}(0, 0) = \sigma(0) \cdot \sigma(0) \ge \sigma(x) \cdot \sigma(y) = \mu_{\sigma}(x, y).$$

Let x, x', y, $y' \in X$. Then

$$\mu_{\sigma} ((x, x') * (y, y')) \cdot \mu_{\sigma} (y, y')$$

$$= \mu_{\sigma} (x * y, x' * y') \cdot \mu_{\sigma} (y, y')$$

$$= (\sigma(x * y) \cdot \sigma(x' * y')) \cdot (\sigma(y) \cdot \sigma(y'))$$

$$= (\sigma(x * y) \cdot \sigma(y)) \cdot (\sigma(x' * y') \cdot \sigma(y'))$$

$$\leq \sigma (x) \cdot \sigma(x') = \mu_{\sigma} (x, x') \cdot And,$$

$$\mu_{\sigma} (x, x') \cdot \mu_{\sigma} (y, y') = (\sigma(x) \cdot \sigma(x')) \cdot (\sigma(y) \cdot \sigma(y'))$$

$$= (\sigma(x) \cdot \sigma(y)) \cdot (\sigma(x') \cdot \sigma(y'))$$

$$\leq \sigma (x * y) \cdot \sigma(x' * y')$$

$$= \mu_{\sigma} (x * y, x' * y') = \mu_{\sigma} ((x, x') * (y, y')).$$

Thus μ_{σ} is a fuzzy dot *BH*-ideal of $X \times X$.

Conversely suppose that μ_{σ} is a fuzzy dot *BH*-ideal of $X \times X$. From (FBH1) we get

$$(\sigma(0))^2 = \sigma(0) \cdot \sigma(0) = c(0, 0)$$

And so $\sigma(0) \ge \sigma(x)$ for all $x \in X$. Also we have

$$(\sigma(x))^{2} = \mu_{\sigma} ((x, x))$$

$$\geq \mu_{\sigma} ((x, x)^{*}(y, y)). \ \mu_{\sigma} (y, y)$$

$$= \mu_{\sigma} ((x^{*}y), (x^{*}y)). \ \mu_{\sigma} (y, y)$$

$$= ((\sigma(x^{*}y) \cdot \sigma(y)))^{2}$$

Which implies that $\sigma(x) \geq \sigma(x * y) \cdot \sigma(y)$ for all $x, y \in X$.

Also we have

$$(\sigma(x * y)^{2} = \mu_{\sigma} ((x*y), x * y)$$

= $\mu_{\sigma} ((x, x) * (y, y)) \ge \mu_{\sigma}(x, x) \cdot \mu_{\sigma}(y, y)$
= $(\sigma(x) \cdot \sigma(y))^{2}$

So
$$\sigma(x * y) \ge \sigma(x) \cdot \sigma(y)$$
 for all $x, y \in X$.

Therefore σ is a fuzzy dot *BH*-ideal of *X*.

Proposition 4.15. Let μ be a left fuzzy relation on a fuzzy subset σ of a *BH*-algebra *X*. If μ is a fuzzy dot BH-ideal of $X \times X$, then σ is a fuzzy dot BH-ideal of a BH-algebra *X*. Proof

Suppose that a left fuzzy relation μ on σ is a fuzzy dot BH-ideal of $X \times X$.

Then

$$\sigma(0) = \mu(0, z) \forall z \in X$$

By putting z=0

$$\sigma(0) = \mu(0,0) \ge \mu(x, y) = \sigma(x),$$

For all $x \in X$.

For any x, x', y, $y' \in X$

$$\begin{split} \sigma(x) &= \mu(x,y) \geq \ \mu(\left(x,y\right)*\left(x',y'\right)\right). \ \mu(x',y') \\ &= \mu(\left(x*x'\right), \left(y*y'\right)). \ \mu(y,y')) \\ &= \sigma(x*x'). \ \sigma(x') \\ \text{Also} \\ \sigma(x*x'). &= \mu(x*x',y*y') = \mu((x,y)*\left(x',y'\right)) \\ &\geq \mu(x,y). \ \mu(x',y') \\ &= \sigma(x). \ \sigma(x') \end{split}$$

Thus σ is a fuzzy dot BH-ideal of a BH-algebra X.

REFERENCES

- [1] Y. Imai and K. Iséki, "On Axiom Systems of Propositional Calculi XIV," Proceedings of the Japan Academy, Vol. 42, No. 1, 1966, pp. 19-22. doi:10.3792/pja/1195522169
- [2] Séki, Kiyoshi. An algebra related with a propositional calculus. Proc. Japan Acad. 42 (1966), no. 1, 26--29. doi:10.3792/pja/1195522171.
- [3] Iseki K and Tanaka S: "An introduction to theory of BCK-algebras", Math. Japan. 23(1978), 1-26.
- [4] P. Bhattacharya and N. P. Mukherjee, Fuzzy relations and fuzzy groups, Inform. Sci. 36(1985), 267-282.
- [5] O. G. Xi, Fuzzy BCK-algebras, Math. Japan. 36(1991), 935-942.
- [6] L. A. Zadeh, Fuzzy sets, Information Control, 8(1965) 338-353.
- [7] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21(1976), 351-366.
- [8] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- [9] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientiae Mathematician 1(1) (1998), 347–354.
- [10] Q. Zhang, E. H. Roh and Y. B. Jun, on fuzzy BH-algebras, J. Huanggang Normal Univ. 21(3) (2001), 14–19.
- [11] J. Neggers and H. S. Kim, on *d*-algebras, Math. Slovaca, 49 (1996), 19-26.
- [12] M. Akram, on fuzzy *d*-algebras, Punjab University Journal of Math.37 (2005), 61-76.