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ON INDIRECT APPROACH TO THE SOLVABILITY OF
QUASI-LINEAR DIRICHLET ELLIPTIC BOUNDARY VALUE
PROBLEM WITH BMO-ANISOTROPIC P-LAPLACIAN
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Abstract. We study here Dirichlet boundary value problem for a quasi-linear elliptic
equation with anisotropic p-Laplace operator in its principle part and L!-control in
coefficient of the low-order term. As characteristic feature of such problem is a specification
of the matrix of anisotropy A = ASY™ 4 Aske¥ in BMO-space. Since we cannot expect
to have a solution of the state equation in the classical Sobolev space Wol’p(Q), we
specify a suitable functional class in which we look for solutions and prove existence
of weak solutions in the sense of Minty using a non standard approximation procedure
and compactness arguments in variable spaces.
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1. Introduction

In this paper we deal with the following boundary value problem

—Ap(Ayy) +|ylP2yu=—divf inQ, y=0 ondQ,

1.1
u e LYQ), u(z)>0ae inQ, (L1

where

—A,(A,y) = —div (|(Vy, AVy)| "= AVy) (1.2)

is the anisotropic p-Laplacian, 2 < p < +o00, A is the matrix of anisotropy,
yq € L*(Q) and f € L>®(Q;RY) are given distributions.

The interest to elliptic equations whose principal part is an anisotropic p-
Laplace operator arises from various applied contexts related to composite mate-
rials such as nonlinear dielectric composites, whose nonlinear behavior is modeled
by the so-called power-low (see, for instance, [1,21] and references therein). From
mathematical point of view, the interest of anisotropic p-Laplacian lies on its
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nonlinearity and an effect of degeneracy, which turns out to be the major difference
from the standard Laplacian on RV . As characteristic feature of boundary value
problem (1.1) is a specification of the matrix of anisotropy A = B + D, where
B = A%Y™ = (A+AY) /2 and D := AsFe¥ = (A—A")/2, and the control u € L1(€).
In particular, we assume that the matrix A is such that

o?(x)I < B(z) < B*(x)] a.e.in Q,

where o, 8 € LY(Q), B(z) > a(x) > 0 almost everywhere in Q, a ¢ L¥(Q),
a~l € LY(Q), and a, o', and B extended by zero outside of Q are in BMO(RN).

We note that these assumptions on the class of admissible matrices are essen-
tially weaker than they usually are in the literature (see, for instance, [8,9,
11,19, 20]). In fact, we deal with the Dirichlet boundary value problem (BVP)
for degenerate anisotropic elliptic equation with unbounded coefficients in its
principal part and with L'-bounded control in the coefficient of the low-order
term. It is well-known that such BVP can exhibit the so-called Lavrentieff pheno-
menon, non-uniqueness of the weak solutions as well as other surprising consequen-
ces (see, for instance, |2,4]). As a result, the existence, uniqueness, and variational
properties of the weak solution to the above BVP usually are drastically different
from the corresponding properties of solutions to the elliptic equations with coer-
cive L*°-matrices of anisotropy (we refer to [6,26-28,31] for the details and other
results in this field). Another distinguishing feature of the boundary value problem
(3.1)-(3.2) is the fact that the skew-symmetric part D of the matrix A is merely
measurable and its sub-multiplicative norm belongs to the BMO-space (rather
than the space L™ (Q) ). This circumstance can entail a number of pathologies with
respect to the standard properties of BVPs for elliptic equations with anisotropic
p-Laplacian even with ’a good’ symmetric part A and a smooth right-hand side f.
In particular, the unboundedness of the skew-symmetric part of matrix A € My
can have a reflection in non-uniqueness of weak solutions to the corresponding
boundary value problem. For more details and other types of solutions to elliptic
equations with unbounded coefficients we refer to [7,14-16,33]. So, in contrast to
the paper [32], where the author consider the case of well-posed Dirichlet boundary
value problem for a quasi-linear elliptic equation with unbounded coefficients in
its principal part, we deal with an ill-posed boundary value problem:.

We introduce a special functional space X, p related to a given control u and
symmetric part B of matrix A, and prove (see Theorem 4.1) that the original
boundary value problem admits weak solutions in the sense of Minty. Moreover,
we show that for every control u € L!(£2), a weak solutions (in the sense of Minty)
to the corresponding BVP can be obtained as the limit of solutions to coercive
problems with bounded coefficients, using any L°°-approximation of BM O-matrix
A. Such solutions are called approximation solutions in [33]. Their characteristic
feature is the fact that they lay in variable space X, p and, in general, do not
satisfy the energy equality but rather some energy inequality. We also derive a
priori estimates for such solutions that do not depend on the skew-symmetric
part D of matrix A. As a bi-product of our approach, we derive the conditions
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guaranteeing the equality Hy%(Q) = Wyh(Q), i.e. we establish the density of
smooth compactly supported functions in I/VO1 2.

2. Notation and Preliminaries

Let © be a bounded open subset of RV (N > 1) with a Lipschitz boundary.
Let p be a real number such that 2 < p < oo, and let ¢ = p/(p — 1) be the
conjugate of p. Let MY be the set of all N x N real matrices. We denote by Siew
and S%m the set of all skew-symmetric and symmetric matrices, respectively. We
always identify each matrix A € M” with the decomposition A = B 4 D, where
B = % (A—I—At) € Sg\;m and D = % (A — At) € Sé\gew. Moreover, applying the
Cholesky method to the symmetric part of matrix A (see Isaacson and Keller
[30]), we deduce the existence of a lower triangular matrix L such that B(x) :=
3 (A(z) + A'(x)) = L¥(x)L(z). In what follows, by matrix norm in M”" we mean

a sub-multiplicative norm

A
I|A|| :== sup {||5|} = (maximal eigenvalue of A"/A)l/2 a.e.in Q.
l€170

¢erN

BMO-Functions Defined on Bounded Domains. We recall that a function g
on RY belongs to the space BMO(RY) if g € L} (RY) and

loc

1
lgll Barogen) = sup — / 19— gol dz < +o0,
al Jo

1
where gg = ]{zgdw = @‘/dix, Q = Q(z,r) is a ball centered at = and of

radius £(Q) = r, and the supremum is taken over all balls Q c R¥. Obviously,
L®(RN) ¢ BMO(RY). As an example of unbounded function in BMO(RY), one
can take In |x|.

For our further analysis, we make use of the following result: if g € BMO(RY)
then the John-Nirenberg estimate

]{2 19— gal? dz < Callgllpaogs, forall p>1 (2.1)

holds for any ball Q@ C RV (see [13]).

N(N+1)

Let L'(Q) "z =L (O Sé\;m) be the space of measurable absolutely integ-
rable functions whose values are symmetric matrices. By BMO(Q;SY ) we

denote the space of all skew-symmetric matrices D = [d;;] (the-so-called matrices
of bounded mean oscillation) such that D € L*(€;SY _ ) and their sub-multipli-
cative norm extended by zero to the entire RY is in BMO(RY). The similar

specification holds for the space BMO(Q; M™).
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Matrices with Degenerate Eigenvalues. Let o, 3 be given elements of L'(Q)
satisfying the conditions

ate LY(Q), a'¢L®Q), 0<a(x)<pB(z)ae inQ, (2.2)
a,a” 1, B extended by zero outside of Q are in BMO(RY). (2.3)

Remark 2.1. As immediately follows from the John-Nirenberg estimate (2.1) and
assumption (2.3), we have

r— — r r— 1 — "
lla™ IHLT <2 1/\04 1 aQ\ dx + 2 1<Q|/ 1dx> 19
<27 4Q| |oz_1—ofl|rdx+ it oz_ldx '
Q |Q’r+1

(21
< CQ7(Ha | Barogen) + la™ ||L1(Q>) Vel (24)

by

Here, @ is a ball such that Q2 C @, and aél —][ a~!dz. The similar estimates
Q

hold true for o and B. So, we can suppose that a,a™t, 3 € L"() for all » > 1
provided the conditions (2.2)—(2.3) hold true.

We define the class of matrices 91,4 as follows
A=B+D=4(A+A") +1(A- A",
a?|nll*> < (n, Bn) < B%[n||* a.e. in Q@ Vi € RY,

Mea(Q) = AeMV B(z) = LY(z)L(z) a.e.in Q,
D e BMOQ;SY, ),

a and (3 satisfy conditions (2.2)-(2.3).
(2.5)

Remark 2.2. Here, in view of the estimate (1, Bn) > o?||n||? a.e. in Q Vn € RV,
L is a triangular matrix with positive (a.e. in Q) diagonal elements. Moreover, for
a fixed A € M4, conditions (2.2)-(2.5) imply the following inequalities:

1L zaro@mry < 18l Bromyy < +o0, (2.6)
(B(2)6,€) = |L(@)¢]* < BP(@) €] a.e.in Q, VEERY (2.7)
L7 (2)¢]” < a2(@)|¢)> a e in Q, VEERY, (2.8)
and, therefore,
IL(2)]| < B(z) and |L7'(2)| <o M(z) a e in O (2.9)

L, L7t e BMO(Q;MY). (2.10)
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Weighted Sobolev Spaces. To each matrix A € 9 ,4(2) we can formally associate
two weighted Sobolev spaces: W, 5(Q) and Hy% (), where W, 5 (Q) is the set of

functions y € Wol’l(Q) for which the norm

» 1/p
g = ([ (o +1(7. BV9)IE) o) (211)

is finite, and Ho’g(Q) is the closure of C3°(§2) with respect to the norm (2.11).
As follows from the definition of the class Mqq and estimates

/Q jyld < ( /Q i de) 191 < Clylly i) Y EWIHE@), (212

1 1
/|Vy|dx§ /|Vy|papda: /p</aqd:c> /i
Q
< ([ 167 B@ TP d) o e < Clallyggo 213)

the space Wo '5(€) is complete with respect to the norm [|-[| ;1. (@) 108 clear that
) 0,B

Hé,%(Q) and W&}’E(Q), for p > 2, are uniformly convex reflexive Banach spaces
such that Hé:%(Q) C W&’E(Q) (see, for instance [10]). In general, the identity
I/VO1 7)) = Hé 7.(Q) is not always valid (for the corresponding examples, we refer
to [5]). ’

Further we make use of the following observation. If we introduce the parameter
ps by ps == ps/(s+ 1) < p with a certain s > 0 and use the Hélder inequality

with the parameter r = ‘Hs'—l = p% > 1, we obtain

/ ‘vy’ps dx :/ |Vy‘psapsa*ps dx
Q Q

= (/Q Vy[PaP d:c)pS/p</Qa51 da:) Vs

s/(s+1)
< (/Q’(Vy,B(x)Vy)!p/Q da:) lo™ | +1q)
(2

by ) Ds.
<Ol P 2.14
<" Clul g (2.14)
s/(s+1
Lo < ([ ran)” e < o, . 219

Hence, each function y € Ho,’B(Q) belongs to the non-weighted space W, L5 (Q)).
Combining this fact with the Sobolev embedding theorem, we deduce:

Nps
N — Ps
and, therefore, we have the compact embedding

Wy (Q) < L"(Q) and Hyh(Q) < L"(Q),

N

N
if s > — then p; = > p,
p

(2.16)
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Moreover, as follows from (2.16) and (2.14), the following the weighted Friedrichs
inequality

by (2.16
HyHL”(Q) < CHyHWOLpS(Q) = C”VZUHLPs(Q)N

by

—

2.14) C01/ps o/2 1/p
< Ol e ([ 190 B@) VP do

—

holds true for each y € Hy (). Hence, the norm

» 1/p
W30 = (] 109 B0 ao) (217)

on the space Hé’g(ﬂ) is equivalent to the norm || - || ;1 @ defined by (2.11).
) 0,B

Weak Convergence in Variable LP-Spaces Associated with ngm—Matm‘ces. Let
N

{ Bk} ey and B be a given collection of Sg,, -matrices such that

B, Be LY (Q;SY ) and By — B in LY(Q;SY ). (2.18)

ysym ) sym

Let LP(Q, Bdx)Y, with p > 2, be the Lebesgue space of measurable vector-valued
functions f(r) € RY on § such that

) 1/
liresany = ([ 105D dz) " < +oc.

We say that a sequence {vk € LP(Q, By, d.’L‘)N}keN is bounded if

limsup/ |(vk,Bkv;§)|g dr < +o0.
Q

k—o00

Definition 2.1. A bounded sequence {vj, € LP(Q, By, d:z:)N}keN is weakly con-
vergent to a function v € LP(Q, Bdx)" in variable space LP(Q, By, dx)" if

lim [ (o, Bpvg) doe = / (¢, Bv) dz Vo € CP(Q)N. (2.19)
Q Q

k—o0

Definition 2.2. A sequence {v; € LP(Q, By dm)N}keN is said to be strongly
convergent to a function v € LP(Q, Adz)V if

lim [ (bg, Brvg) doz = / (b, Bv) dx (2.20)
k—o0 (9] Q

whenever by — bin LI(Q, By dz)" as k — oo, where ¢ = p/(p — 1) is the Holder
conjugate of p.

Remark 2.3. Note that in the case By = B, Definitions 2.1-2.2 leads to the well-
known notion of convergence in weighted Lebesgue space LP (2, B dx)™.
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The main properties of the weak and strong convergence in LP($, By dz)™ can
be expressed as follows (see [17,18] for the details):

Proposition 2.1. If a sequence {vk € LP(Q, By dw)N}keN is bounded and con-
dition (2.18) holds true, then it is compact with respect to the weak convergence
in LP(Q, By, dx)N.

Proposition 2.2. If the sequence {vk € LP(Q, By dx)N}keN converges weakly to
v € LP(Q, Bdz)"N and condition (2.18) holds true, then

liminf/ (i, Brog)|2 dxz/ (v, Bv)|? dx. (2.21)
Q Q

k—o0

Proposition 2.3. Assume the condition (2.18) holds true. Then the weak conver-
gence of a sequence {vj, € LP(Q, By, dan')]\[}k,eN to v € LP(Q, Bdx)N and

lim / (g, Brog)|2 dm:/ (v, Bv)|? dz (2.22)
k—oo J Q

are equivalent to the strong convergence of {vy}, oy to v in LP(Q, By, dz)™.

We make also use of the following inequality that was established by Maz’ya
in 1972 [23]. If p is a positive Radon measure, then

1/r
([loran) <cu [ 1velas voecr@. vreoo, ()
Q Q

with the best constant N1/
p(2)

Cy = —_—

M dn HY (0%

where the supremum in (2.23) is taken over all open subsets of 2, with C°°-boun-
dary, such that ' c Q.

(2.24)

3. Setting of the Boundary Value Problem

Let yq € L?(Q2) and f € L>®(Q)" be given distributions. For a fixed A € Myq,
we consider the following boundary value problem:

—div (|(Vy, AVy)|"Z AVy) + [yl 2yu = —divf in Q, (3.1)
y=0 on 0%,
uwe LYQ), wu(xr)>0 ae in Q,

where we adopt u as a given control function.

It is worth to notice that, in view of the definition of the set 9,4, we deal with a
boundary value problem for degenerate quasi-linear elliptic equation with singular
coefficients. It means that even for symmetric matrices of coefficients A € My
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this problem can exhibit the Lavrentieff phenomenon (i.e. Wol”]g(Q) # H&v’g(Q))
and, as a consequence, non-uniqueness of the weak solutions. Thus, the original
boundary value problem (3.1)-(3.2) is ill-posed, in general.

The another distinguishing feature of the boundary value problem (3.1)-
(3.2) is the fact that the skew-symmetric part D of the matrix A € M,y is
merely measurable and belongs to the space BMO(Q;MN) (rather than the
space of bounded matrices L>° (Q; MM )) This circumstance can entail a number of
pathologies with respect to the standard properties of BVPs for elliptic equations
with anisotropic p-Laplacian even with ’a good’ symmetric part B of A and a
smooth right-hand side f. In particular, the unboundedness of the skew-symmetric
part of matrix A € 9,4 can have a reflection in non-uniqueness of weak solutions
to the corresponding boundary value problem. For more details and other types of
solutions to elliptic equations with unbounded coefficients we refer to [7,14-16,33].

We associate to the boundary value problem (3.1)-(3.2) the following space
Xu,B = H&%(Q) N LP(Q,udx). Here, LP(Q,udz) is a usual Banach space with
respect to the measure du = udz. Since u € LY(Q) and u(z) > 0 a.e. in €,
it follows that p is a positive Radon measure and, hence, the space H&y’g(ﬂ) N
LP(Q,udz) is well defined and it is a Banach space with respect to the norm

(see [3])
» 1/p
Il » = ( [ 1559 o+ [ |y|pudx)

1/p
= llyl? + [lyll7 :
Hy () Lr(Qudz)

Definition 3.1. We say that, for a fixed control u and given distributions A €
Mg, and f € L=¥(Q)V, a function y = y(A,u, f) is a weak solution (in the sense
of Minty) to boundary value problem (3.1)-(3.2) if y € X, p and the inequality

p—2
‘T

/Q |(Vp, AV@)| 2 (AVe, Vo — Vy) dx + /Q P[P 2p(p — y)udz

> /Q (/. Vo - Vy)dr (3.4)

holds for any ¢ € C§°(12).

To begin with, let us show that this definition makes a sense. Indeed, by the
initial assumptions and Hoélder’s inequality, we have

/ (f.Vp — Vy)de = / (LY, LV — LVy) da
Q Q

<l /Q LIV — LVy| da

by (2.9), (2.17) -
< £l zoo @y lla ™ Lagey lle — yHHévg(Q) <Cle-ylx,p (3.5)
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and

[ 162t = y)uds < 1ol uan e = slisouan < Clie = vl . (39
As for the first term in (3.4), we observe that

(Ve, AV)["T = [(LV, [T+ (L) 'DL ' |LV)|"7 < |T|"% [LVP~?

T

and, therefore,

/ﬂ (Vip, AV)| T (AVp, Vg — Vy) da
g/ ||| | LV o[P~2(T LV g, LV — LVy) da
Q
< / ITIE LV~ LV — LYy da
Q

<lleliate, | ITIEP LV — LV da

1/q
< el ([ 171E500) o= vlgyey 3

Since,
/ |7 87 der < / (1+a2D])? pde
9]
< gt / (8 + (@718)" IDI| %) da

<277 (181500 + 107 7 B0 g0y 1D sy
by (2.4)
< oo,

it follows from (3.7) that

p—2
/Q (Ve, AVY) "2 (AVp, Voo — Vy)dr < Cllo —yllx, e (3.8)

Thus, the well posedness of each term in the variational inequality (3.4) and,
hence, the consistency of the definition of the weak solution in the sense of Minty
to the considered boundary value problem, obviously follows from the estimates

(3.5)-(3.6), (3.8).

Remark 3.1. The estimate (3.8) and the fact that (Ve(z), D(z)Ve(x)) = 0 a.e.
in € by the skew-symmetry property of D, imply that the variational inequality
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(3.4) can be rewritten as follows

p—2 _
/Q |(Vo,BVyp)| 2 (AVp, Vyp — Vy) dx + /Q lolP (¢ — y)udz
> /(f7 Vo —Vy)dz. (3.9)
Q

Getting inspired by this, we call a function y € X, p a weak solution (in the sense
of Minty) to boundary value problem (3.1)-(3.2) if it satisfies the inequality (3.9)
for every test function ¢ € C5°(9).

Taking this remark into account, it is reasonable to consider another definition
of the weak solution to the given boundary value problem, in the terms of distribu-
tions, which appears more natural:

y € X, p is the distributional solution to (3.1)—(3.2) if the integral identity
/ (Vy, BVY)|"T (AVy, Vo) do + / ly[P~?youde = /(f, V)de  (3.10)
Q Q Q
holds true for every ¢ € C3°(€2).

In spite of the fact that the relations between these definitions are very
intricate for general matrix A € M,y (for an example when these definitions
lead to the different solutions even for linear equations, we refer to [25]), we can
leverage the integral identity (3.10) for the following estimate

p—2
| [ 199 B99)| 5 (49, V) o]
/\y!p ' fplur df”*/’ ) fIILVp| dz

< 191w anI€llr@uan + 1@ oz el e g

< 19185l + 1Nzl oy | Il
:C(y7u7B7f> H‘PHXu,B' (3'11)

Remark 3.2. As follows from (3.11), a weak solution to the considered problem
in the sense of distribution belongs to the special subset D (X, g) of the space
Xu.B = Héy’%(Q) N LP(, udx), elements of which possess the property (3.11). As
a result, if y € D(X,, p) then the mapping

—2
= [y, pla = /Q (Vy, BVy)| "2 (AVy, Vo) da
can be defined for all test functions ¢ € X, p using the standard rule

[yv Z}A = lim [y7 (Pk]A
k—o0
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where {op}eny C© C5°(Q) and ¢ — 2z strongly in X, p (it is the case when
we essentially use the fact that C5°(£2) is dense in H&’%(Q) N LP(Q,udx)). In
particular, if y € D(X, g), then we can define the value [y,y]4 and this one is
finite for every y € D(X,, p), although the "integrand"

=

((Vy, BVy)|2 + |(Vy, BVy)|"= (DVy, Vy)

needs not be integrable on €, in general. As a result, we can derive form (3.10)
the energy equality for distributional solutions

[y ]4 + /Q yPude = /Q (f, V) d. (3.12)

However, as it follows from definition of the form [y, ¢]4, the value [y, y]4 is not

equal to Hy”?{é’ﬁ(ﬁ)’ in general, and it does not preserve the inequality

[y, yla = HZ/HZ;:%(Q) for all y € D(Xy,p).
Hence, even if the relation HS’Z,(Q) = I/VO1 2(2) holds true, the energy equality

(3.12) does not allow us to derive a reasonable a priory estimate in [ - [|x, ,-norm
for the weak solutions in the sense of distributions.

4. On Solvability of Boundary Value Problem (3.1)—(3.3)

Our main intension in this section is to show that boundary value problem
admits a weak solution due to the approximation approach. It is clear that
the condition A € 9M,q(2) ensures the existence of the sequence of matrices
{Ak}en C Maa(2) N L®(Q;MY) such that A, — A strongly in L'(Q;MY).
With that in mind we give a few auxiliary results.

Lemma 4.1. Let {Ap}, oy C Maa(2) and A € Myq(Q?) be matrices such that

Ap e L*(OQ;MY) VEeN,

A — A strongly in LY(;MY), (4.2)
(n, Agn) > a2[n® a.e. in QVneRY
and for some positive oy € R, ay, > a(x). (4.3)
Then
L' = L7 and T, - T strongly in LY, MY), (4.4)
where

1 1
By = 5(Ax+ A}) = LiLy, Bi=5(A+A") = L',
Ty := I+ (LL) 'DyL;t, T:=1+ (L) 'DL7Y, (4.5)

1 1
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Remark 4.1. The simplest way to construct a sequence {Ag},cny C Maq(€2),
possessing the properties (4.1)-(4.3), is to set

Ay, = k' + [max {min {a;;, k}, —k}]gjzl
or apply the procedure of the direct Steklov smoothing to a given matrix A €
M ,q(Q) with some positive compactly supported smooth kernel (see, for instance,

[15])-

Proof. The conditions (4.1)-(4.3) ensure that B! € LOO(Q,S?{W) for all k € N
and (up to a subsequence)

Dy(z) — D(z) and L;'(z) = L '(z) ae.in Q.
Moreover, since a > « a.e. in €, it follows that
1L (@) € et <al(2) ae in Q,

where o=t € L1(Q) (see (2.2)). Hence, the sequence {L;l}keN is equi-integrable.
In view of the definition of the class 9,4(€2), the same conclusion can be made

for the sequence of skew-symmetric matrices {(LZ)_IDkL,zl }keN‘ As a result, the

property (4.4) is a direct consequence of Lebesgue’s Theorem. O

Lemma 4.2. Let f € L=(Q)Y be a given distribution, and let {Ap}ycny C Maa()
and A € Myq(Q) be matrices satisfying the properties (4.1)~(4.3). Then, for an
arbitrary smooth function ¢ € C§°(2), the sequences

—2
{vk = [(Vep, Bkw)r’TL;ITkLkw}keN and {wy = By f}, oy
are bounded in LI(Q, By, dz)N and

vy — v =|(Ve, Bch)\pTﬂL_ITLVgo strongly in variable L9(Q, By, dz)Y, (4.6)
wy, — w = B~Lf strongly in variable LI(Q, By dz)™
where the matrices Ty, and T are defined by (4.5).
Proof. Indeed, by definition of the space L9(S2, By dz)", we have

o0l 0,y = [ 0 Bron)lf do = [ Lyl do
= [ (%0 B T DL do < ol [ 1L 171"
< el [ (577 (1+a~2Dul) 1)
<2 gl | (14 @~ HDLY) do
< 2 ol gy (181 gy + 1812yl 120 1D

by (2.4)
< const < +o0. (4.8)
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Hence, the sequence {vj},cy is bounded in L4(Q, By, dz)".
Further we notice that, by the initial assumption (4.2), Lemma 4.1, and BM O-
properties of the matrices L, L™!, and D, we see that the sequence

—2
(Ve, ByV)|'T T, Ly Ve
keN

is equi-integrable and
(Ve, BiV)| "2 ThLiVe — |(Vo, BVY)|"2 TLVy a.e. in Q
for any ¢ € C§°(12). Hence, by Lebesgue’s Theorem, we have the strong convergence
(Yo, BuVe)|"7 Tl — |(Vip, BV9)|"T TLVy in L'(QGRY).  (4.9)

As a result, this implies

tim [ (V. By) dz = lim / (Vi BoV)| T (Vih, T LVip) da
— 00 Q

k—oco Jo

by (49) / (V. BV9)|"T (V) TLV) da
Q
:/ (V4, Bv) de, Vi € CF(Q). (4.10)
Q

Thus, the sequence {vg},cy is weakly convergent in L9($, By, dz)™ to the

vector-valued function v = [(V, BVgo)\pT_QL_lTLVgo.

It remains to show that the sequence {vy},y is strongly convergent to v. To
do so, we make use of Proposition 2.3. Following this assertion, it is enough to
prove the equality

lim /|(Q}k,Bk’Uk)|gd£L': lim / |Livg|? dx
Q k—oo JO

k—o0

=t [ IV BRI T DLV da
Q

k—oco
- / ‘|(vcp,Bw)\”T‘2TLw’q da :/ (v, Bv)? dz. (4.11)
Q 9)
In view of the estimate

—2
(Yo, BuVe) " LV < LVl Tl < 57| T 90!

and the fact that the term (B8P~!||T|||Vp|P~1)? = BP|T9|Vg|P is in L'(Q) by
Remark 2.1, we see that the sequence {| (i, Brug) |2 }k N is equi-integrable. On
€

the other hand, property (4.2) and Lemma 4.1 imply that, within a subsequence,

(Ve, Bngo)\pTiZTkLk — [(Ve, BVgo)\prQTL almost everywhere in €.
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Therefore, the equality (4.11) is a direct consequence of Lebesgue Dominated
Theorem. Thus, the strong convergence in variable space L9(S2, By dz)" of the
sequence {vy},cy is established.

The property (4.7) can be proved following the same arguments. O

For our further analysis, we make use of the following concept.

Definition 4.1. We say that a bounded sequence

{(Ak>yk) € Maa(Q) x [Hé,’gk(ﬂ) N Lp(QaUde)] }keN (4.12)

w-converges to the pair (A,y) € M,4(2) x [Héy’]g((l) N LP(Q, udm)} as k — oo (in
SymbOISv (Almyk) i> (Avy)) if

A — A in LY(Q;MY),
yr —y in LP(Q) and weakly in weighted space LP(Q,udz),
Vyr — Vy in the variable space LP(Q, By dz)".

In particular, as follows from this definition, if (A, yr) — (A,%), then

i [ 4cl do = [ 4] da.

k—oo Q Q
lim /ykgpud;v:/ycpudm Vo e C5o (),
k—oo J Q

i [ (& BuV) do= [ (6BVY) do VEE CR(O).
Q Q

k—o00

In order to motivate this definition, we give the following result.

Lemma 4.3. Let {(Ak,yk) € Mea(Q) x [Hé’gk((l) ﬂLp(Q,udx)} }k N be a se-
: €
quence with the following properties:

(i) Ay € L®(;MY) VE € N, and there ezists a matriz A € M,q(Q) such that
Ap — Ain LY (Q;MY);

(i1) {yk € Hé’]gk(Q) N LP(Q,udx)}k N 97e bounded sequences, i.e.
’ €

sup/ (uly” + (Vy, BkVyk)g ) dz < +00; (4.13)
keNJQ

Then, within a subsequence, the original sequence is w-convergent. Moreover, each
w-limit pair (A,y) belongs to the set Myq(2) X [Hé’g(ﬁ) NLP(Q,udx)|.
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Proof. To begin with, we note that the conditions (i)—(ii) and estimates (2.12)—
(2.13) immediately imply the boundedness of the sequence
e H'(Q) N LP(Q, ud }
{m e Hip(@ nP@ude)}
in WH1(Q; M) and in variable spaces HS’]’;k (Q) and LP(Q, udzx). Moreover, due
to the inequalities (2.14)—(2.15), we have the compact embedding
Nps
l,p r * p
HO,Bk(Q> — L (Q) for all 1 <r <ps = m
Since pf = A],prgs > p provided s > %, it follows that the sequence {y}cn is
compact with respect to the norm topology of LP().

Thus, combining this fact with the compactness criterium for the weak conver-
gence in variable spaces (see Proposition 2.1), we can deduce the existence of a
pair (y,2) € LP(Q) x LP(Q,udz) x LP(Q, B dx)"N such that, within a subsequence
of {yr}ren, We have

yr —y in LP(Q), (4.14)
yp — z in LP(Q,udz), (4.15)
Vyr — v in the variable space LP(Q, By dz)". (4.16)

Our aim is to show that y = z, v = Vy, and as a consequence y € H&’%(Q) N
LP(Q, udz). With that in mind, we note that for every measurable subset K C (2,
the estimate

/ Vil de < (/ Lyl d )" (/Ka—qu>3
(/ vykakV?/kﬂgdaz)’l’(/l(a—qu);
4.1

(
S C|K\2" o | 20 ()

by (24) B %
<" k(% (ol g+l sarogn)) ™

implies equi-integrability of the family {|Vyg|g~}. Combining this fact with es-
timate (2.13) and property (ii), we deduce that the sequence {|Vyg|}, oy is weakly
compact in L(€2). Since, for an arbitrary ¢ € C§°(Q)Y, we have

B.'¢ — B7'¢ strongly in variable LI(Q, By, dz)™ (4.17)
by Lemma 4.2, it follows that

/ (&, Vyg) dx = / (B}, '€, BeVyy) dw
Q Q

by (4.16), (4.17), and (2.20) / (B’lf Bv) e
Q

b;

3

:/Q(fg,v) de VEe oM
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Thus, in view of the weak compactness property of {Vyr}, oy in LY (N we
conclude
Vyr = vin LYGRY) as n— oo, (4.18)
Since yr € WLH(Q) for all k¥ € N and the Sobolev space W11(Q) is complete,
(4.14) and (4.18) imply Vy = v, and consequently y € H&’%(Q).
To end the proof, it remains to establish the equality y = 2z a.e. in (. Since the
sequence {yx € LP(Q,udx)}, is bounded and for any measurable set K C €,

we have
1/p 1/q
/ ypudr < (/ |ypuda:> </ udm) ,
K Q K

it follows that the sequence {yyu},cy is equi-integrable and weakly compact
in L'(Q) and, hence, the weak convergence (4.15) is equivalent to the weak
convergence

yru — zu in LY(Q). (4.19)

Further, we note that

Jo |u| dz
/|<p|udx< sup ,Hli,z E)) /|V | dx

llull 21 (o o\ I
< S’HC%W (/ |LV | dav) (/Qa da;)

< const HSOHHS%(Q) Vi € C°(R2)

by Maz’ya inequality (2.23). Since the set C§°(2) is dense in H&’%(Q), it follows
that the family {u(yr — y)},ey is weakly compact in L'(£2). Taking into account
the compactness of the embedding H&’%(Q) — LP(Q) and the weak convergence
yr — y in LP(Q), we can suppose that y; — y almost everywhere in . Hence,
u(yr —y) — 0 a.e. in Q. Then the strong convergence u(yx — y) — 0 in LY(Q)
immediately follows from the Lebesgue Theorem. Thus, in order to conclude the

desired equality y = z, it is enough to combine this inference with the property
(4.19). The proof is complete. O

We are now in a position to prove the main result of this section. Namely, we
show that the boundary value problem (3.1)-(3.3) admits a weak solution.

Theorem 4.1. For given f € L®(Q)N, w € LY(Q), u >0 a.e. in Q, v > 0, and
for an arbitrary matric A € Myq, there exists a weak solution y € X, p (in the
sense of Minty) to boundary value problem (3.1)—(3.2) with an a priori estimate

1

1 1
o )" (lo " Issro@v) +lla M g)"  (4:20)

Iylix,.s < (

and the energy relation

/\(Vy,BVy)]gdx—i—/ \y]pudacg/(f,Vy)dm. (4.21)
Q Q Q
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Proof. Let u € Uyq be an arbitrary admissible control. For a given matrix A € My
let us consider an approximation {A},cny C Maa(2) with properties (4.1)—(4.3),
and the corresponding variational problem

Find y;, € WyP(Q) such that
—2
/Q (Vo Ak V)| 2 (AxVyy, Vo) da + /Q kP 2y pu da (4.22)
= /Q(f, Ve)dz, Ve e ().
Since Ay, € L>®(;MY), it follows that (Viyg, AxVyr) = (Vyr, Bx V). Hence,
by the well-known result of quasi-linear elliptic equations (see [29, Theorem 2.14]),

for every k € N, the problem (4.22) admits a unique weak solution y; € VVO1 P(Q)
such that

/ (Vi BeVye) | dor + / P de = / (f.Vy)de  (423)
Q Q Q

and

—2
/Q ((V, BiVo)|' 2 (ApVe, Ve — V) da + /Q [P~ (e — yr)udz

(4.24)
> /(f, Vo —Vy,)dz, Ve C5(Q).
Q

It is clear that the energy equality (4.23) leads to the following estimate

Il , = [ (0 BTl Edot [ nPude < [ (L LT do

< HfHLOO(Q)NHa_luLQ(Q)HkaHé,g @
By
1
< Cuqllfll oo v (HO‘ilHBMO(RN) + ||OleqL1(Q)) " lykllx, 5,

Hence, the sequence {y},cy is bounded in variable space X, p, ,

1

el < (Coll i)™

1

X <”04—1||BMO(RN) + ||06_1H%1(Q)) ", VkeN, (4.25)

and, by Lemma 4.3, we can suppose the existence of an element y € X, g such
that (within a subsequence) y is subjected to the estimate (4.20) and

yp —y in LP(Q,udx), (4.26)
Vyr — Vy in the variable space LP(Q, By, dz)V. (4.27)
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We are now in a position to pass to the limit in (4.24) as k — oco. With that in
mind we make use of Lemma 4.2. In particular, we utilize the properties (4.6)—
(4.7). Then, it follows from Definition 2.2 and (4.26)—(4.27) that

/(f, Vo — Vyg)dz = / (B f, By (Vo — Vi) da
Q Q

k—o00 -1 . _ .
& /Q (B™'f,B (Ve — V) da /Q (f. Vo — Vy) de,

—2
/Q (V, BLVo)| T (AxVe, Vo — Vi) da

—2
= [ (70 BT % L TV, By (Vo = V) do

5 [ (VB0 T LTI 6. B (Ve = Vi) do

— [ |(Vo, BY)|"T (AVp, Vi — V) da.
Q

Taking into account that

_ k—oo _
/Qltpl” 20(p — yp)udr =3 /QSO|p 20(p — y)udz

by (4.26) and definition of the weak convergence in LP(2,udx), we can pass
to the limit in (4.24) as k — oo and readily obtain the desired relation (3.9).
Thus, y is a weak solution to the boundary value problem (3.1)-(3.3). As for
the energy inequality (4.21), it follows from (4.23) and the weak convergence
properties (4.26)-(4.27). O

Remark 4.2. As follows from approximation procedure that was used in the
proof of Theorem 4.1, it always leads to some weak solution of the original
boundary value problem. Such solutions are called approximation solutions in [33].
The characteristic feature of such solutions is the fact that they satisfy energy
inequality (4.21) and their a priori estimate (4.20) does not depend on the skew-
symmetric part D € BMO(;SY _ ) of matrix A € Myq(2). Moreover, it is
unknown in general whether approximation solutions are the weak solutions to
the boundary value problem (3.1)-(3.2) in the sense of distributions and belong

to the set D(X, B).

5. On Density of Smooth Compactly Supported Functions in
Woh(9)

The aim of this section is to find out the sufficient conditions guaranteeing the
equality Hy(Q) = Wy'5(Q). With that in mind, it is enough to check whether,
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for each A € M4(Q) and p > 2, the set of smooth compactly supported functions
C§e(Q) is dense in Wol,’g(Q).
Let f € W&v’g(Q) be an arbitrary function. For any § > 0, we set
Qs :={z e : dist(z,00) >}
and (s(z) = / ws/a(lr —yl)dy, Vze RV,
Q3574

where
1
() = Cexp(m), 0<|z| <1,
0, =1,
with
-1
1
C= / exp <2> dx
B1(0) 22 =1
and

1
w(lel) = 5(lel/5), Vo eRY,

so that ws € C3°(B5(0)), / ws(z)dr =1, ws(|z|) >0 Ve e RV,
RN
Then, the following properties of (5 are well-known |24, Theorem 1.4.2]:

(i) 0 < (s(x) <1 for all z € RY;
(i) ¢s(x) =1 for all x € Qy;
(iii) ¢s(z) = 0 outside of Qs /9;

(iv) ‘%ﬂf? < % Ve € RY, i = 1,...,N, where C is a positive constant
independent of 4.

Setting fO(x) := f(x)¢s(x), we see that f© = 0 outside of Q5 /2. Before proceeding
further, we make use of the following auxiliary result.

Lemma 5.1. Assume that, in addition to (2.2)-(2.3), the functions « and [
satisfy the condition

a™l e L\ Q;), where Q5:={zeQ : dist(z,00) > 5} (5.1)

Jor some 6 > 0 small enough. Then for given A € Myq(Q) and f € W&’g(Q), we
have

FewybQ) and |f - o1, =o0(1) asd — 0. (5.2)
) WO’B(Q)
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Proof. Indeed, the inclusion f9 € Wolv’g(Q) is a direct consequence of the property
f% = 0 outside of 25/2 and the following estimate

P
2

£ = [ (5P + |95, 5955)]) da
= [ (fal + 1L (69 f + 19G)P) do

S/Q(Iflp+p\LVf|p+p!f”Bp|VC5\p) dx

) ) 2N\’ )
<A+ PI g ) + I |V 5 ) | M

<CON Py g

which is valid for § small enough (see (5.1)).

As for the asymptotic behaviour of the difference f — f(5 = f(1 — (5), we
provide this analysis utilizing the following chain of estimates

IF = Sy = [ 190~ GIPde+ [ 0= GIE(VA) ~ L(VeP da
< [ vz en [ 19s BV do

dp [ UPIVGE do
O\

eV’
TR . (5 ) /| L (53)
é

In order to estimate the last term in (5.3), we make use of the Maz’ya inequality
(2.23). This gets

1 LN(Q/)%
flPdz)? < sup _/ Vf|dx
</Q\95’ | ) wcovn, HYHO) Q\Qg‘ |
LN (@) L
< sup / LV fla™ " dx
e, HY7HOY) Jova, LS

- EN(Q/)%
< sup
ocove, HY71(0)

Q=
=

o ||L°°(Q\95)EN(Q/)

</Q\95 |LV f|P dx)
LN ()

<lla Y i S . 4
< ™ zeo\05) ﬂ’ilfllliﬂa rHN—l(aQ/)HfHW(};};(Q\Q(;) (5.4)
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Since LN (QY) < C*§HN=1(0') for § small enough and with C* independent of
J, it follows from (5.4) that

p < P p
/Q\Qa|f| o < const 8 111y 10,

Thus, from (5.3) we finally deduce
1= £l oy < Ol oy =) 5820, (59
O

Taking this result into account and following the standard rule, we define the
smoothing of f9:

(169 ) = [ wela =G dy = (o ), Yo eRY. (50

Then (f(s), () = 0 has a compact support in 2 provided € < §/2. Since (f(s), €
C5e(92) and Wol”g(Q) C WhPs(Q) with continuous embedding for all p, < p (see
estimates (2.14)—(2.15)), it follows from the classical theory of Sobolev spaces that
(f¢s). = fC in WHPs(Q) as € — 0 and, therefore, up to a subsequence, we can
suppose that (f(s). — f(s almost everywhere in . Let us show that (f(;). — f
in Wol”g(Q). Indeed, we can deduce from (5.6) that

V(1) @) <OMEV)@), Ve>o, (5.7)
3

where M (f)(x) = sup 612| / |f(y)| dy is the Hardy-Littlewood maximal function.
Q Q

It is also known that [12, p.174]

a,l/a € ﬂ A, & Inae closureBMoLoo(RN). (5.8)
r>1

Since Ina € closuregyro L2 (RY) is equivalent to Ina® € closuregyo L=(RY),
it follows from (5.8) and (2.2)—(2.3) that o, B” € A,. Then, by the celebrated
Mackengoupt theorem [22], we have

el & ] (Vf%) ]papdeC(a,p)/RN IV foPa? dz,
wea, o / MV de < CEp) [ VI .
Since the norms [¢| and \/(&, BE) are equivalent in RV, it follows that
BPoP e A, & / M(Vf), BM(Vf ))|%dx

< Cy /RN | (Vf5,BVf5) 5dr (5.9)
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for some positive constant Cy depending on «, 3, and p. Using the fact that each
of the matrices A € M,4(2) is assumed to be zero-extended outside of Q, we
deduce from (5.7) and (5.9)

JE 02,9 (7)Yt ae= [ 1(5 ()9 (1))

<cC RNI(Vf5 (V5%)) 5

X

_ c/ (V7. BOVI) [Edo < CUP g ) < 400 (.10

Following the similar reasoning, it can be shown that
L) pae<c [15Pde I, 0 <+ (G1)
(9] 15 0O WO,‘B(Q)

Hence, the sequence {(f5)5}5>0

view of the pointwise convergence: (f(5). = f(s almost everywhere in Q, we can
deduce the weak convergence (f(s). — f(sin Wol’]g (). Then by Mazur’s theorem,

the element f := f(s can be attained in the strong topology of Wol,’g(Q) by the
convex combinations of {( f‘s)e}

is bounded in || - |10 ()~horm. Therefore, in
0,B

0" It means that for any given 1 > 0 it can be

found a convex combination fJ € C$°(Q) of a finite number of elements of the
sequence {(f5)6}€>0 such that

0 0 n
Ife—f ”W(i*g(Q) <3

Besides, the property (5.2) implies that

_ 49 n
\f—f ||W01’,§(Q) <3 for § small enough.
Hence, for a given function f € Wg 2 (1) and arbitrary positive 7, we have
6
If = fi HW&”E(Q) <.
Thus, we can formulate the obtained result as follows:

Theorem 5.1. Assume the set of admissible matrices Mqq(Y) is such that in
addition to its definition in the form (2.5), the condition (5.1) holds true for some
positive small enough parameter §. Then the set of smooth compactly supported
functions C§°(2) is dense in W()l”g(Q) or, what is equivalent, we have the equality

Hy5(9) = Wy ().
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