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ON SOME TYPES OF INVERSE PROBLEMS FOR
DIFFERENTIAL EQUATIONS
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Abstract. The inverse problems for di�erential equations are investigated, the solutions

of which do not use information about the exact characteristics of the physical process.

Such inverse problems have not yet become widespread, but they are of great practical

importance. Some approaches to solving inverse problems of this type are suggested.
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1. Introduction

Consider some types of inverse problems for di�erential equations [9], [10].
Let the physical process be characterized in the general case by a certain

number of variables x1, x2, ..., xn(state variables). The choice of the physical process
characteristics is determined by the ultimate research goals. Let us assume that
the variables x1, x2, ..., xn satisfy a linear system of ordinary di�erential equations
with constant coe�cients:

ẋ = Ex+ Fz, (1.1)

where x(t) = (x1(t), x2(t), ..., xn(t))T is a vector function of state variables, z(t) =
(z1(t), z2(t), . . . , zm(t))T is a vector function of external loads (some of components
are unknown), (.)T is transpose sign; E = {eik}, 1 ≤ i, k ≤ n, F = {fjl}, 1 ≤
j ≤ n, 1 ≤ l ≤ m are matrices with constant coe�cients of the corresponding
dimension, t ∈ [0, T ], [0, T ] is interval of time where the solution of inverse problem
is investigated. By mathematical description of the physical process we consider
the set of the system of equations (1.1) with symbols of external loads, the vector
function of the external loads as z(t) = (z1(t), z2(t), . . . , zm(t))T in the special
form for individual problem and the initial condition x(0) = x0 . Thus, the
mathematical description is a collection of mathematical model, vector function
of external loads and initial conditions.

Brie�y concerning the justi�cation of such the de�nition. In inverse problems
for the system (1.1) there are two main classes of inverse problems: - the determi-
nation of the coe�cients of the matrices E,F using the some experimentally deter-
mined components of the vector function x(t), the given initial conditions and the
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vector function z(t); - the unknown components of the vector function z(t) are
determined under the some experimentally determined of the components of the
vector function x(t), the given initial conditions and the coe�cients of the matrices
E,F [7]. For the purpose of separating these two basic problems it is necessary
to introduce the mathematical description of the physical process in the form of
a collection of mathematical model (di�erential equations (1.1)) with symbols of
external loads (general form of external loads) and separately the vector function
of external loads z(t) in the special form for individual problem [9].

The combination of these two inverse problems into one inverse problem is
undesirable since it leads to a high degree of uncertainty. This is con�rmed by
the results of a review of the literature. Among the mathematical descriptions,
one can single out descriptions that give the results of mathematical simulation
which coincide with the given experimental measurements of the components of
the vector function x(t) with the experiment accuracy. Such descriptions are called
adequate mathematical descriptions (AMD) [11].

2. Statement of problem

For system (1.1) it is possible to obtain several types of inverse problems in
frame of second class of inverse problems for ordinary di�erential equations [9],
[10], [11]. Let us investigate only two inverse problems from them.

Inverse problems of type I: it is necessary to de�ne all unknown components
z1(t), z2(t), . . . , zm(t) of vector function of external loads z(t) on segment [0, T ]
using given from experiment functions of state variables x1(t), x2(t), . . . , xn(t)
on segment [0, T ], matrixes E,F and initial conditions aimed at constructing
of AMD. Such inverse problems have not yet become widespread, but they have
important mean for problems of mathematical modeling [11], as well as for problems
of physical processes prediction [16], [15] and control problems [8], [4], [2].

Inverse problems of type II:it is necessary to de�ne all unknown components
of vector function of external loads z1(t), . . . , zm(t) on segment [0, T ] using some
components of vector function of state variables x1(t), . . . , xn(t) on segment [0, T ]
(which are given from experiment) and initial condition x(0) = x0 aimed at
obtaining the useful information about exact characteristics of real unknown
external loads on system (1.1).

These inverse problems have applications for problems of diagnostics [3], for
problems where it is necessary to obtain a new knowledge about the world around
us [12].

Suppose that system (1.1) has only one unknown component zj(t), 1 < j ≤ m
of vector function z(t) and only one given component x1(t) of vector function x(t).

Using the linearity of the system (1.1), Volterra's integral equation of the �rst
kind with respect to the unknown function z1(t) can be obtained with use the
additional condition (see later)

ˆ t

0
K(t, τ)zj(τ) dτ = uδ,j(t), orAp,jzj = uδ,j , t ∈ [0, T ], (2.1)
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where zj(t) ∈ Z, uδ,j ∈ U ;U,Z are some normed functional spaces.

The function uδ,j(t) is de�ned in terms of the initial conditions x(0) = x0,
the given function x1(t) and the known components z2(t), . . . , zm(t) of the vector
function of the external loads z(t) with a predetermined error

‖ uδ,j − uexδ,j ‖U≤ δj , (2.2)

where uexδ,j are exact right parts in (2.1).

Notice that inverse problems of type I, II have the same equations for unknown
functions zj(t) [9], [11].

The properties of operators Ap,j are saved for inverse problems of both types:
operators Ap,j are compact operators for typical cases of functional spaces choice.
Let us consider the set of possible solutions Qδ,p,j of equation (2.1):

Qδ,p,j = {z ∈ Z :‖ Ap,jzj − uδ,j ‖U≤ δj}. (2.3)

The sets Qδ,p,j are not bounded at any δj while operators Ap,j are compact
operators. So inverse problems of type I belongs to class of incorrect problems [9],
[17] and special methods have to be used for their solution [9], [17].

In inverse problem of type I it is enough to obtain any function from the set
Qδ,p,j . The inverse problems with such ultimate goals will be called as the inverse
problems of synthesis [9], [11]. Let us consider exact equation zexj of exact equation
(2.1)

Aexp,jz
ex
j = uexj , 1 < j ≤ m, (2.4)

where Aexp,j is the exact operator in (2.1), uexj is exact right part (initial data).

Besides the exact solution zexj of the equation (2.4) may not belong to set of
possible solutions Qδ,p,j since the operator Ap,j is being described inexactly of the
real physical process.

In such inverse problems there is no need to require the convergence of the
approximate solution of the problem to an exact solution zexj of equation (2.4)
by δj → 0 [10]. Therefore, the approximate solution cannot have properties of
regularization [10], [11].

In addition these inverse problems have the following features:

• the approximate solution can considerably di�er from the exact solution zexj
as zexj /∈ Qδ,p,j ;

• the size of an error of the approximate solution in relation to the exact
solution zexj has no importance for further use of the approximate solution;

• the exact solution zexj of an inverse problem in aggregate with initial mathema-
tical model can give worse results of mathematical modeling than the approxi-
mate solution as zexj /∈ Qδ,p,j ;



On some types of inverse problems 81

• the error of the operator Ap,j to the exact operator Aexp,j is possible not
to take into account, as the initial inexact mathematical model of physical
process will be used at mathematical modeling further.

The solution of such problems can interpret only as a good model for purposes
of mathematical modeling.

In [9], [17] it is assumed that exact solution of equation (2.1) zexj belongs to
the set of possible solutions Qδ,p,j . This property was used by construction of
regularized algorithms. So in case of inverse problems of type I (zexj /∈ Qδ,p,j) it is
necessary to choose another approaches.

Now the conditions will be obtained when the set of possible solution is not
empty.

Let us assume that in system (1.1) there is only one state variable x̃1, which
is obtained by experiment and only one unknown component zj(t), 1 < j ≤ m
of vector function z(t) of external loads. The matrix F = F̂ = fk,i, 1 ≤ k ≤
n, 1 ≤ i ≤ m, has the special form: by �xed l, j (1 ≤ j ≤ m, 2 ≤ l ≤ m) element
f̂lj 6= 0, f̂ki = 0, k 6= l, i 6= j.

Then �rst equation of system (1.1) with matrices E, F̂ is di�erentiates (n−1)-
times on t:

d2x̃1

dt2
= B1E

2x̃(t) + f̂ljzj(t),

d3x̃1

dt3
= B1E

3x̃(t) + f̂lj żj(t),

. . .

d(n−1)x̃1

dt(n−1)
= B1E

(n−1)x̃(t) + f̂ljz
(n−3)
j (t),


(2.5)

where matrix-string B1 is de�ned as B1 = {b1i }, 1 ≤ i ≤ n, b11 = 1, b1k = 0, k 6=
1, 1 ≤ k ≤ n.

System (2.5) and �rst equation of (1.1) are solved relatively state variables

x̃2(t), ...., x̃n(t) through variables x̃1(t), ˜̇x1(t), ..., x̃
(n−1)
1 (t) and is substituted in

following equation

dnx̃1

dtn
= B1E

nx̃(t) + f̂ljz
(n−2)
j (t)

.

Consequently the next equation was obtained

dnx̃1

dtn
= Φ(t, x̃1, ˜̇x1, . . . , x̃

(n−1)
1 (t), f̂ljzj , . . . , f̂ljz

(n−2)
j ). (2.6)

For solving system from equations (2.5) and �rst equation of (1.1) relatively
state variables x̃2(t), . . . , x̃n(t) it is su�cient that the Jacobian of such a transforma-
tion is nonzero.

Hence this condition has the form
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J =
D(B1Ex̃,B1E

2x̃, . . . , B1E
n−1x̃)

D(x̃2, x̃3, . . . , x̃n)
=

= det



∂B1Ex̃
∂x̃2

∂B1Ex̃
∂x̃3

. . . ∂B1Ex̃
∂x̃n

∂B1E2x̃
∂x̃2

∂B1E2x̃
∂x̃3

. . . ∂B1E2x̃
∂x̃n

. . . . . . . . . . . .

∂B1En−1x̃
∂x̃2

. . . . . . ∂B1En−1x̃
∂x̃n


6= 0. (2.7)

The di�erential equation of n -th order (2.6) is obtained under condition (2.7).

Ln[x̃1(t)] = Ln−2[zj(t)], (2.8)

where Ln[x̃1(t)], Ln−2[zj(t)] are linear di�erential operators of n -order and (n−2)
-order respectively.

Thus, the su�cient condition for the reduction of the inverse problem for
system (1.1) to the inverse problem for one high-order equation (2.8) is condition
(2.7).

In inverse problem for equation (2.8) it is necessary to de�ne the function of
external load zj(t) , using function of state variable x̃1(t) that is obtained from
experiment data with error.

Let the inaccuracy of function x̃1(t) relatively to exact function xex1 (t) in metric
C[0, T ] is given as follow

‖ x̃1(t)− xex1 ‖C[0,T ]≤ δ1. (2.9)

Theorem 2.1. The set of possible solutions Qδ,p,j of inverse problem for system

(1.1) is non-empty if condition (2.7) is valid.

Proof. The inverse problem for system (1.1)(1.1) can be reduced to inverse problem
for equation (2.8) if the condition (2.7) is satis�ed.

It is well-known that any continuous function x̃1(t) can be approximate in
metric C[0, T ] with any accuracy δ by polynomial of q -order x1,q(t) [1]:

‖ x̃1(t)− x1,q(t) ‖C[0,T ]≤ δ, q = q(δ). (2.10)

Initial conditions for function x1,q(t) are values

x1,q(0) = x0,0
1,q , ẋ1,q(0) = x1,0

1,q , ẍ1,q(0) = x2,0
1,q , ..., x

(n−1)
1,q (0) = x

(n−1),0
1,q . (2.11)

Let us consider the function γ1(t)

γ1(t) = Ln[x1,q(t)]. (2.12)
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It is evident that γ1(t) ∈ C[0, T ].
The solutions x1,q(t) of nonhomogeneous di�erential equation

γ1(t) = Ln−2[zj,q(t)]. (2.13)

with di�erent initial conditions form the set Zj,q, zj,q(t) ∈ Zj,q.
The solution x̂1,q(t) of di�erential equation (2.8) with initial conditions (2.11)

and any functions from set Zj,q will satisfy the inequality (2.10).
The right part uδ,j of equation (2.1) is determined with the help of function

x̃1(t) only through continuous operations. So the set of possible solutions Qδ,p,j
for equation (2.1) is non-empty for any δ and this set contains the functions
continuously di�erentiable any number number of times.

3. Possible approaches of solving synthesis inverse problems

Let us consider the possibility of constructing stable algorithms for solving
inverse synthesis problems without assuming that the exact solution zexj of the
inverse problem belongs to the set of possible solutions Qδ,p,j .

If the functional spaces Z,U are Banach spaces and the operator Ap,j is linear,
then the set of functions Qδ,p,j is convex, closed, and unbounded. Let's show it.

Let z1, z2 ∈ Qδ,p,j . Then for zα = αz1 +(1−α)z2 ∈ Qδ,p,j inequality is realized

‖Ap,jzα − uδ,j‖U ≤‖ αAp,jz1 + (1 + α)Ap,jz2 − αuδ,j − (1− α)uδ,j ‖U≤ δj .

Consequently, the sets Qδ,p,j are convex.
Let the sequence zk ∈ Qδ,p,j strongly converges to the element z0.
Then

‖ Ap,jz0 − uδ,j ‖U ≤‖ Ap,jzk −Ap,jz0 ‖U + ‖ Ap,jzk − uδ,j ‖U
≤‖ Ap,j ‖‖ zk − z0 ‖ +δj.

Let us pass to the limit in the last inequality when k →∞. Then we have

‖ Ap,jz0 − uδ,j ‖U≤ δj.

Thus, the sets Qδ,p,j are closed.
In inverse synthesis problems the exact solution zexj of the inverse problem

does not belong to the set of possible solutions Qδ,p,j . Therefore, it is impossible
to construct the regularizing algorithms which give solutions converging to an
exact solution. However, in inverse problems of synthesis there are no need in
such algorithms property, but it is su�cient to �nd any function from the set
of possible solutions Qδ,p,j . This set is unbounded for arbitrary δ because of the
compactness of the operator Ap,j . Therefore, it makes sense to choose from the set
Qδ,p,j a non-arbitrary element but an element with additional properties which are
suitable for further research. For example, we can choose as the solution of inverse
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problem the most "convenient"element from the set Qδ,p,j for the mathematical
modeling purposes. It is possible to choose fromQδ,p,j the simplest element [9], [11]
that is the most stable to small changes of the initial data, the best element for
prediction purposes [9], [11] and so on. Some algorithms of a choice from set Qδ,p,j
of an element with additional properties based on a variation principle can are
proposed.

Consider now the following extreme problem

Ω[zδj ,p] = inf
z∈Qδ,p,j

Ω[z], (3.1)

where functional Ω[z] has been de�ned on set Z [17].

Theorem 3.1. Assume that system (1.1) has only one state variable x̃1(t), which
is obtained by experiment, and only one unknown component zj(t), 1 ≤ j ≤ m
of vector function of external loads. The matrix F = F̂ = fk,i, 1 ≤ k ≤ n, 1 ≤
i ≤ m, has the special form: by �xed l, j (1 ≤ j ≤ m, 2 ≤ l ≤ m) element

f̂lj 6= 0, f̂ki = 0, k 6= l, i 6= j. Suppose that Z is a re�exive Banach function

space, that the functional Ω[z] is convex and lower semi continuous on Qδ,p,j
, that the Lebesgue set M(v) bounded for a certain function from v ∈ Qδ,p,j:
M(v) = {z ∈ Qδ,p,j : Ω[z] ≤ Ω[v]} . Then the solution of the extreme problem

(3.1) exists and belongs to Qδ,p,j.

Proof. It is obvious that the exact lower bound of the functional Ω[z] on Qδ,p,j
can be achieved only from the points of the set M(v) [19].

We show that the set M(v) closed. Let the sequence zk ⊂ M(v) strongly
converges to w . Since the set Qδ,p,j is closed we have w ∈ Qδ,p,j . The following
inequality holds since the functional Ω[z] is lower semi continuous on Qδ,p,j :

Ω[w] ≤ lim
k→∞

Ω[zk] ≤ C = Ω[v].

Hence we have w ∈M(v) . The closedness of the set M(v) is proved.

Let us show that the set M(v) is convex. Let z1, z2 ∈ M(v). Since the
functional Ω[z] is convex, we have

Ω[zα] = Ω[αz1 + (1− α)z2] ≤ αΩ[z1] + (1− α)Ω[z2] ≤

≤ αΩ[v] + (1− α)Ω[v] = Ω[v].

Consequently the element zα = αz1 + (1− α)z2 ∈M(v). The convexity of set
M(v) is proved.

It is known that any bounded closed convex set from a re�exive Banach space
Z is weakly compact. So the set M(v) is weakly compact set.

We choose an arbitrary minimizing sequence zk ∈M(v)

lim
k→∞

Ω[zk] = Ω∗.
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Since the set M(v) is weakly compact, it follows that there is at least one
subsequence zkm ∈M(v) that weakly converges to some point z∗

zkm−→z∗ as m→∞, z∗ ∈M(v).

The following inequality is valid

Ω∗ ≤ Ω[z∗] ≤ lim
k→∞

Ω[zkm ] = lim
k→∞

Ω[zk] = Ω∗,Ω∗ = Ω[z∗].

Theorem 3.2. Let us assumed that system (1.1) has only one state variable

x̃1(t), which is obtained by experiment, and there is only one unknown component

zj(t), 1 ≤ j ≤ m of vector function of external loads. The matrix F = F̂ = fk,i, 1 ≤
k ≤ n, 1 ≤ i ≤ m, has the special form: by �xed l, j (1 ≤ j ≤ m, 2 ≤ l ≤ m)
element f̂lj 6= 0, f̂ki = 0, k 6= l, i 6= j. Suppose that Z is a Gilbert functional space,

that the functional Ω[z] is strongly convex and lower semi continuous on Qδ,p,j
, that the Lebesgue set M(v) is bounded for a certain function from v ∈ Qδ,p,j:
M(v) = {z ∈ Qδ,p,j : Ω[z] ≤ Ω[v]} . Then the solution of the extreme problem

(3.1) exists, unique and belongs to Qδ,p,j.

Proof. According to Theorem 3.1, the set Z∗ = z ∈ Qδ,p,j : Ω[z] = Ω∗ is not
empty. Since the functional Ω[z] is strictly convex the set Z∗ consists of a single
point.

The choice of the function v is determined from physical considerations.
Thus, there is a principal possibility of constructing solutions of inverse synthesis

problems on the basis of the variation principle. Satisfaction of additional conditions
is determined by a special choice of the functional Ω[z]. These solutions should be
interpreted only as functions necessary for the subsequent mathematical modeling
of physical processes in order to predict the behavior of physical processes, optimize
the characteristics of these processes, etc.

In inverse problems of type II it is necessary to �nd such function from the set
Qδ,p,j which gives the useful information about exact solution of equation (2.1).
However, such information cannot be obtained if the exact solution zexj does not
belong to the set Qδ,p,j .

Thus, it is necessary to take into account the error of operator Ap,j in relation
to the exact operator Aexj .

Let the characteristic of the deviation of the exact operator Aexj from the
approximate operator Ap,j be given [17] for linear operators Ap,j , A

ex
j in case U

is normed functional space:

‖ Ap,j −Aexj ‖Z→U= sup
‖z‖≤1

‖ Ap,jz −Aexj z ‖U≤ hj . (3.2)

A similar error characteristic can be determined in another way
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‖ Ap,j −Aexj ‖Ω= sup
z∈Z1

ρU (Ap,jz,A
ex
j z)

{Ω[z]}0.5
≤ hj (3.3)

for �xed positive functional Ω[z] de�ned on Z1 ⊂ Z,Z1 everywhere dense in Z.

In this case the set of possible solutions of (2.1) Qδ,h,p,j should be expanded
so that the exact solution zexj belongs to it with guarantee zexj ∈ Qδ,h,p,j [17]:

Qδ,h,p,j = {z :‖ Ap,jz − uδ,j ‖U≤ δj + hj‖z‖Z}, (3.4)

where hj is the error characteristic of the operator Ap,j .

The sets Qδ,h,p,j are not bounded at any δ and any hj while operators Ap,j
are compact operators. So inverse problems of type II belong to class of incorrect
problems [9], [17] and special methods are used for their solutions [9], [10], [11],
[17], [6].

To this type of inverse problems should be attributed the problems of diagnosis
in various areas of activity [5], de�nition of real properties of physical objects [12]
and etc. The inverse problems with such ultimate goals will be called as the inverse
problems of measurement (or interpretation) [9], [10].

Consider now the following extreme problem:

Ω[zhj ,δj ,p] = inf
z∈Qδ,h,p,j∩Z1

Ω[z], (3.5)

where functional Ω[z] has been de�ned on set Z1 ⊂ Z,Z1 everywhere dense in
Z [17].

During solving the practical inverse problems there are a big di�culties of
de�nition of the value hj since the structure and parameters of the exact operator
Aexj cannot be determined in principle. Consequently, the exact solution zexj of the
inverse problem does not belong in an expanded set of possible solutions Qδ,h,p,j
with a guarantee as a rule.

In addition, the approximate solution obtained in this way after substituted
into equation (2.1), gives a big value of deviation from the experimental data which
excludes an objective evaluation of the results of solving the inverse problem.

A certain di�erent approach for solving of inverse measurement problems is
proposed in the works [13], [18]. To obtain the useful information on the exact
solution zexj , a hypothesis is proposed [14]. Such an approach makes it possible to
obtain objective estimates from below of the exact solution zexj in the sense of a
priori given functional Ω[z].

When solving the well known inverse problem of astrodynamics (the measure-
ment problem), Adams and Leverier did not take into account the error of the
operator Ap,j [12]. Nevertheless, the solution was obtained which turned out to
be quite accurate. This contradiction gives a strong impetus for the search of new
methods for solving measurement inverse problems.
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4. Conclusion

It is shown that the algorithms for �nding approximate solutions of inverse
synthesis problems and inverse measurement problems for di�erential equations
can be created without assuming that an exact solution of inverse problem belongs
to the set of possible solutions.

References

1. N. I. Akhieser, Lectures on Approximation Theory, Moscow, Nauka, 1965.

2. L. Beilina, M.V. Klibanov, Synthesis of global convergence and adaptivity for
a hyperbolic coe�cient inverse problem in 3D, Journal Inverse Ill-Posed Problems,
(18) (2010),85�132.

3. V. Canndola, Anomaly detection: A survey, ACM Computing Surveys (CSUR),
41 (2008), 1-�15.

4. G. Dreyfus, Neural networks: methodology and applications, Springer Science and
Business Media, USA, 2005.

5. Yu. Fan, Yu. Wejun,Multi-fault diagnosis for industrial processes based on hybrid
dynamic bayesian network, Proceedings of the IASTED International Conference
Modelling, Identi�cation and Control (MIC 2013), 2013, February 11�13, Innsbruck,
Austria, (2013), 501�506.

6. A. Goncharski, A. Leonov, A. Yagola, On a regularizing algorithm for ill-
posed problems with an approximately given operator, Journal of Computational
Mathematics and Mathematical Physics, 12 (6) (1972), 1592�1594.

7. C. I. Kabanichin, Inverse and ill-posed problems, Novosibirsk, Siberian Scienti�c
Publishing House, 2009.

8. À.B. Kurzhansky, Control and Observation under Conditions of Uncertainties,
Moscow, Nauka, 1977.

9. Yu. L. Menshikov, Inverse problems for dynamic systems: classi�cation and
solution methods, Journal Advances in Pure Mathematics, 3 4 (2013), 390-�399.

10. Yu. L. Menshikov, Inverse Problems of Synthesis: Basic Features, Proc. of 8th
International Conference on Inverse Problems, Kracow, Poland, 12�15 May, 2014,
107�108.

11. Yu. L. Menshikov, Synthesis of Adequate Mathematical Description as Solution of
Special Inverse Problems, European Journal of Mathematical Science, 2 (3) (2013),
256�271.

12. Yu. L. Menshikov, Inverse Problem of Astrodynamics, World Journal Mechanics,
5 (2015), 249�256.

13. Yu. L. Menshikov, Identi�cation of external loads on mechanical systems by the
regularization method, The thesis abstract, Kharkov, Ukraine, 1978.

14. Yu. L. Menshikov, One approach to solutions of measurement's inverse problems,
Journal Mathematical Inverse Problems, 1 (2) (2014), 71�85.

15. P. Nedyalko, I. Jordanov, Gap analysis and optimization of Hydroprocessing
prediction model, Proceedings of the IASTED International Conference and 201
Applications Arti�cial Intelligence (AIA 3), February 11�13, Innsbruck, Austria,
(2013), 7.

16. Fu. Shual, J. Yong, Xu. Shiqi, Zh. Kai, J. Yi, Prediction of air pollution in
Changchun based on OSR method, World Journal of Modeling and Simulation, 13
(1) (2017), 12�18.



88 Yurii L. Menshikov

17. A.N. Tikhonov, V.Y. Arsenin, Methods of incorrect problems solution, Nauka,
Moscow, 1979.

18. A.N. Tikhonov, On the approximate functional equations of the �rst kind , Proc.
of Mathematical Institute AS USSR, 158 (1981), 197�202.

19. F.P. Vasilev, Methods of Extreme Problems Solution, Nauka, Moscow, 1981.

Received 06.02.2018


