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ON A REPRESENTATION OF THE SOLUTION TO
THE DIRICHLET PROBLEM IN A DISK. THE POISSON
INTEGRAL BASED SOLUTION IN POLYNOMIALS

V.L. Borsch* I. E. Platonoval

Communicated by Prof. P.1. Kogut

Abstract. The representation u(xz) = Fy(x) Q,,_o(x)+Q,, (x) for the solution to the Di-
richlet problem for the Laplace equation in a disk: Fy(x) = |& — x| — ¢? < 0, is proved
using the Poisson integral; @, () being the polynomial boundary function of degree m,
Q2 (x) being the uniquely determined polynomial of degree m — 2.
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1. Introduction

Consider the well known Dirichlet problem for the Laplace equation in a disk
of radius c centered at point x; in the plane R? parameterized by the cartesian
orthogonal coordinates & = (x, x5)

Au(z) =0, x € Bi(z)) = {z: |x — zo|* < °},

(1.1)

u(x) = uy(x) , z € S2(zy) = {x: |z — x> =},

where the boundary function uy(z) € 2 (SZ(x)).

The unique solution u(x) € € (B2(z) ) 2% (B2(z,)) to the problem is known
to have some representations [3], for example, a) as the trigonometric series

Qg

u(r,p) = 5 1 i (g)u (au cos (up) + b, cos (,ugo)), (1.2)

where the circle over the function name indicates changing the cartesian coordina-

tes to the polar ones: 11 = 215 +1rcosp, Ty = 19 +rsine, (r, ) € B2(x)); ay,
a,, and b, are the Fourier coefficients for 4 (); b) as the Poisson integral

i )_1/2” to(0) (2 —r?) df
PN = o o 2 —2crcos(0—¢)+r2

(1.3)
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being the convolution of the boundary function and the Poisson kernel, or ¢) as
the real part of the Cauchy integral.

But what happens to the solution to the Dirichlet problem (1.1) when the boun-
dary function is a polynomial

u()(x) - Qm(x) - Z ap,q 1117 x% = {(xlva) - (C, 90)} - &0(90)7 (14)

where p,q € Z\Z_, a,, € R? It is a very simple question to be answered quickly.
The solution is of course a polynomial of the same degree m as the boundary
function @,,(x) (1.4). But has the polynomial solution a morphology suitable
for checking the solution to be valid? The question had puzzled us in academic
year 2012-2013 we started as the lecturer and the instructor in the partial
differential equations course at the Faculty of Mech & Math of DNU. Setting up
the tutorial Dirichlet problems in polynomials we tried to compose the solution
manual in such a way to check the solutions to the problems not pointwise but
functionally. The linear boundary functions are exactly the solutions to the prob-
lems provided the domains of definition of the boundary functions are extended
form S2(x,) to B2(x,). The quadratic boundary functions Q,(z) lead to the quad-
ratic solutions and are easily represented as follows

u(@) = Fy(x) by + Q5(x), (1.5)

where b, are the uniquely determined constants, and the prime over the boundary
functions is explained below in the formulation of the proposition 1.1.

But what about the solution to the Dirichlet problem when the boundary
function is a polynomial of the degree higher than second? We had thoroughly
studied all the known to us textbooks and solution manuals on the subject
in Russian and English but in vain. We had been amazed that no one of the
above textbooks or solution manuals answers the question. Therefore, we had to
conjecture that the morphology of the solution remains the same as that given by
the formula (1.5) where the constant b, is replaced with a polynomial P,,_,(x)
of the order m — 2. The conjecture had been formulated in [2] as the following

Proposition 1.1. Solution to the Dirichlet problem (1.1), where the boundary
function is a polynomial @Q,,(x) (1.4), admits the following representation

u(®@) = Fy(x) Qryo(@) + Q@ (), (1.6)

where the polynomial F,(x) of second degree specifies the boundary of the disk:
Fy(x) = |t —xo|* —* =0, Q,,_5(x) is the uniquely determined polynomial of de-
gree m — 2, and Q' (x) is the evident extension of the boundary function Q,,(x)
from S2(x,) to B2(x,) (this means that c is replaced with r € [0,¢] in (1.4)).
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Applying some environments allowing symbolic algebraic manipulations we
had successfully tested the conjecture using a lot of the boundary functions,
including those of very high degree. Finally, we had proved the proposition using
the direct approach based on the trigonometric series representation (1.2) for
the solution to the Dirichlet problem and published the proof in [2].

Then we had succeeded in proving the proposition in quite different ways, say,
applying the symmetry methods [1,5,6]. But when proving the above proposition
we had turned out to be involved in the problem of finding the morphology of
the Neumann problem in a disk. We had tried to find the representation formula
to the Neumann problem posed in polynomials and had found that the integral
formula for the solution known in R? as the Dini integral suits well for this. So,
completing our exercises with the Dirichlet problem in a disk posed in polynomials
we’d like to present a proof of the above statement fully based on the Poisson
integral for the Dirichlet problem.

2. Proving the representation

Proof. Firstly, we expand the Poisson kernel into the series [3]
2 _ 2
c2 — 2cr cos B + r?

_ 1-¢? :{Z:Qew}
1—20 cosf + o2

1 1 o (0.@)
— — Y 24
=1+ —+ = 1+ 27+ 2
v=0 v=0

P(b;r,¢) =

=1 +2ig’ycos(79) =1 —I—Qi (g)wcos(’ye),
y=1 y=1

2

absolutely and uniformly convergent in the disk B

integral (1.3) as follows

(xy) and rewrite the Poisson

2 =\
i) = 3= [ (@) PO pire) 00 =) +2 3 (£) Liw). (21
y=1

where the integral terms are

1 2

L(p) tg(0) cos[y (0 —p)]dO, vy e Z\Z_. (2.2)

Secondly, we consider the monomials 2} 22 C Q,,(z) = ug(x) (1.4), where

2 < p+q < m, separately, accounting for the following cases to be possible:
1) p+¢isan odd: a) pisan odd, ¢ =0;b) p=0, ¢ is an odd; ¢) p is an odd, ¢ is
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an even; d) p is an even, ¢ is an odd; 2) p + ¢ is an even: a) p is an even, ¢ = 0;
b) p =0, q is an even; ¢) p is an odd, ¢ is an odd; d) p is an even, ¢ is an even,
and for the sake of brevity assume that x; = 0.

Let p is an odd: p > 3, and ¢ = 0, then [4]

p=1
2

ug(x) = 2} = cPcos? ¢ = c’ ZC“COS[( —2u) @] = ty(p) (2.3)

0 1 ¥ op—1 P p wn) e o\¥), .
n=0

and we calculate the integral terms (2.2) to be

-1
1 cP Z 2m
T#) = 1= goer 2 O [ coslto—2)01a8 = 0.
pn=0
p—1
1 e K, (7
L) = 1 50 ZO ap /0 cos[(p — 2 +7) 0 — y¢] dO
p—1
1 P 2 2m
+ s T Cﬁ/o cos [(p = 2p =) 0 + ¢ df
©n=0
cP =y

Cp® cos(yvp), v=p—2u, 2u=0,...,p—1.

Since (p — 2u) € N, all the integrals of the formula for the term I;(¢) vanish.
The same is true for all the integrals in the first sum of the formula for the
terms I, (), and for p — 2u — v € N and the corresponding integrals in the second
sum of the formula. But when v = p — 2u, then cos[(p —2u—7v)0 +vp] =
cos (y¢p), and the corresponding integrals in the second sum are equaled to
27 cos (yp).

Thirdly, we substitute the above non-zero integral terms I (¢) into the integral
formula (2.1)

i
L

rP 1 < -~
= 5 cos (py) + = Z cyr? 2 21 cos [(p — 2u) ]
pn=1

op

and rearrange the last sum as follows
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p—1 p—1
2
Z cl P72 2R cos [(p — 2u) @] = Z cy P2 (62” F 7"2“) cos [(p — 2u) ]
p=1 pn=1
p 1 p 1
= Z ChrPcos[(p —2p) ] + Z (O 2u ( 2 7“2“) cos[(p — 2u) ¢]
p=1
p=1 p—1
2 2
= ClrPcos[(p —2p) ¢] — (7‘2 — 02) Z cy rP=2m A, (r)cos[(p —2u) ¢l ,
p=l1 p=1

where the factorization of the binoms ¢®* — r?* is used, and

I, wp=1,
A”(r): 2u—2 | 2.2u—4 2pu—4y2 | 212
A e L cas + w>1.
Gathering all the terms, we obtain the solution to the Dirichlet problem (1.1)

p—l

W(r,9) = 5 1Zc“cos (p—2u) ]

p 1
2

> ch 2 4, (r) cos [(p = 242) o

23) . . .
D i, 0) + Fy(r,0) Qo).

The other monomials z} z are treated the same way. O
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