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ABSTRACT

Roots of MesHree methods go back to the sevent
The major difference to finite element methodshest
the domain of interest is discretized only with esy
often called particles. These particles interac
meshfree shape functions in a continuum framew
similar as finite elements do although part

In FDM, the meshes used are also often called ¢
in the FVM, the meshes are led volumes or cells;
and in FEM, the meshes are called elements.
terminologies of grids, volumes, cells, and elers
carry sometimes certain physical meanings as tre
defined for different physical problems. All the

“connectivity” can change over the course o grids, volumes, cells, andlements can be terms

simulation. This flexibility of mesliree methods he meshes in accordance with the definition of m

been exploited in applications with large deformiasi The mesh must be predefined to provide a ce

in fluid and solid mechanics, e.g. to name a feee- relationship between the nodes, which becomes
surface flow, metal forming, fracture a building blocks of the formulation procedure of
fragmentation, to name a few. Though there arave well known conventional numeric methods.
publications on mesfree methods formulated in

Eulerian (or ALE) description, e.g. Fries 2005, r The meshree methods establish a system

meshfree methods are pure Lagrangian in chara algebraic equations for the whole problem don

The non negligible advantages of m-free methods without the use of a predefined mesh, or use e

as compared to finite elements are: their highdex generable meshes in a much more flexible or “fre

continuous shape functions that can be exploitgd manner. Meslree methods essentially use & of
for thin shells; higher smoothness; certainantages nodes scattered within the problem domain as ve
in crack propagation problems. The most unhic on the boundaries to represent the problem do

drawback of mesifree methods is probably th¢ and its boundaries. The field functions are t

higher computational cost, regardless of si approximated locally using these noi

instabilities that certain medhee methods have. Tt

paper deals with the basic methodology of r-free  Some of the mesfree methods are often term

methods along with the mathematics invol mesh-less ®thod. The ideal requirement for

“mesh-less” method is:

FDM, FEM, FVM, > No mesh is necessary at all throughout the prc
shape  function, of solving the problem of given arbitra
geometry governed by partial differential syst
equations subject to all kinds of bound
conditions.

» The work published so far conclude that the r-
free methods developed so far are not ent
“meshdess” and fall in one of the followin
categories:

» Methods that require background cells for
integration of system matrices derived from

KEYWORD: discretization,
Eigen-value, triangulation,
collocation, SPH

l. INTRODUCTION

In the traditional FEM [13], the FDM [5], and thi
FVM [6], the spatial domain in problem discretized
into meshes. A mesh is defined as any of the
spaces or interstices between the strands of that
is formed by connecting nodes in a predefi
manner.
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weak form over the problem domain. EF@Gnd more flexible ways to make use of mesh has
methods may belong to this category. Thessolved. The concept of element-free, mesh-less, or
methods are practical in many ways, as thmesh-free method was proposed, in which the domain
creation of a background mesh is generally mood the problem is represented, ideally, only bytdf
feasible and can be much more easily automataubitrarily distributed nodes.
using a triangular mesh for 2D domains and a
tetrahedral mesh for 3D domains. The mesh-free methods have shown great potential

» Methods that require background cells locally fdior solving the difficult problems mentioned above.
the integration of system matrices over th&riangular types of mesh that can be much more
problem domain. These methods require only easily created automatically for complicated 2D and
local mesh and are easier to generate. 3D domains, as shown in Figures 1 and 2. Thesetype

» Methods that do not require a mesh at all, but thatt triangular background cells are sufficient for
are less stable and less accurate. Local poivgcessary numerical operations in mesh-free methods
collocation methods using irregular grids mayhis provides flexibility in adding or deleting
belong to this category. Automation of nodagpoints/nodes whenever and wherever needed. For
selection and improving the stability of thestress analysis of a solid domain, for examplesethe
solution are still some of the challenges in thesge often areas of stress concentration. One can
kinds of methods. relatively freely add nodes in the stress concéntra

» Particle methods that require a predefinition afrea without worrying too much about their
particles for their volumes or masses. Theelationship with the other existing nodes.
algorithm will then carry out the analyses even i
the problem domain undergoes extremely larg
deformation and separation. SPH methods belot
to this category. This type of method suffers fron
problems in the iImposition of boundary
conditions. SPH simulates well the overall
behaviors of certain class of problems such
highly nonlinear and momentum-driven problems

This loose definition of mesh-free method recogsize =]

the fact:

1. Many mesh-free methods (often more robus
reliable, and effective ones) do use some kind «
mesh, but the mesh is used in much more flexib
and “freer” ways; Figure - 1 a triangular mesh of elements or

2. Most important motivation of developing mesh- background cells for a complicated 2D domain
free methods was to reduce the reliance on the use
of “quality” meshes that are difficult or In crack growth problems, nodes can be easily added
expensive to create for practical problems afround the crack tip to capture the stress coratonr
complicated geometries with desired accuracy. This nodal refinement can be

moved with a propagation crack through background

. THE IDEA OF MESH FREE METHODS: cells associated with the global geometry. Adaptive

A close examination of the difficulties [1,3]meshing for a large variety of problems, 2D or 3D,

associated with FEM pinpoints at the root of thimcluding linear and nonlinear, static and dynamic

problem: the heavy and rigid reliance on the use sfress analysis, can be very effectively treated in
quality elements that are the building blocks oM-E mesh-free methods in a relatively simple manner.

A mesh with a predefined connectivity is required tBecause there is no need to create a quality naesh,

form the elements that are used for both fieldalde the nodes can be created by a computer in a much

interpolation and energy integration. As long asiore automated manner, much of the time an
elements are used in such a rigid manner, tbagineer spending on conventional mesh generation
problems shall not be easy to solve. And, the mfeacan be saved. This can result in to substantidlaros
liminating or reducing the reliance on the elementsne savings in modeling and simulation projects.
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Figure -2: a tetrahedral mesh of element:
background cells for a compéted 3D doma

[Il.  BASIC TECHNIQUES FOR MESH-FREE
METHODS:

The general procedure and basic steps for -free
methods are presented here under through an exi

of structural problem.

A. Basic steps:

Step 1: Domain representation or discretiza

The geometry of the solid or structure is first cree
in a CAE code or prprocessor, and is triangulated
produce a set of triangular type cells with a sk
nodes scattered in the problem domain anc
boundary. Boundary conditions and load
conditions are then specified for the model. ~
density of the nodes depends on presentation
accuracy of the geometry, the accuracy requirerok
the solution, and the limits of the computer reses
available. The nodal distribution is usually n
uniform and a denser distribution of nodes is o
used in the area where the displacement gradie
larger. Because adaptive algorithms can be ust
meshfree methods, the density is eventu:
controlled automatically and adaptively in the cad
the meshree method, we do not have to worry -
much about the distribution quality of the initraddes
used in usual situations. In addition, as a r-free

method, it should not demand too much for the pa
of nodal distribution. It should be workable wn

reason for arbitrarily distributed nodes. Because
nodes shall carry the values of the field varialihea
meshfree formulation, they are often called fi¢
nodes.

Step 2: Displacement interpolation:

The field variable (say, a component of
displacement vector) u at any point at x=(x, Y.
within the problem domain is approximated
interpolated using the displacements at its ni
within the support domain of the point at x tha
usually a quadrature point, i.e.,

) = Y &, 00u; = D(d,
Ic
n )
Where,
S, is the set of local nodes included in a “smalldt
domain” of the point x, such a local domain isled!

support domain, and the set of local nodes ared
support nodes

u; is the nodal field variable at th™ node in the
support domain

ds is the vector that collects all the nodal fi
variables at these support nc

$i(x) is the shape function of th™ node created using
all the support nodes in the support domain ar
often called nodal shape funct

A support domain of a point x determines the nun
of nodes to be used to approximate the functioone
at x. A support domain can be weighted us
functions that vanish on the boundary of the sufc
domain, as shown in Figu3. It can have different
shapes and its dimension and shape can be dif
for different points of interest x, as shown in Utig-4.
The shapes most often used are circular
rectangular, or any shape to include des
supporting nodes. The concept of support dor
works wal if the nodal density does not vary t
drastically in the problem domain. However,
solving practical problems, such as problems
stress singularity, the nodal density can \
drastically. The use of a support domain baseche
current point ofinterest can lead to spatially bias
selection of nodes for the construction of sh
functions.
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Support domain obtained. The strain and stress can then be
retrieved using strain— displacement relations and
constitutive equations. A standard linear algebraic
equation solver, such as a Gauss elimination
method, LU decomposition method, and iterative
methods, can be used.

2. For free-vibration and buckling problems, Eigen
values and corresponding eigenvectors can be
obtained using the standard Eigen-value equation
solvers. Some of the commonly used methods are

Figure - 4 the following:
» Jacobi’'s method

In extreme situations, all the nodes used could e Given's method

located on one side only, and the shape functions’s The bisection method

constructed can result in serious error, due ¥ Inverse iteration

extrapolation. To prevent this kind of problem, th& Subspace iteration

concept of influence domain of a node should beluse> Lanczos method

The concept of influence domain is explained later

in the discussion. The interpolation, defined i8. For dynamics problems, the time history of

Equation (1), is generally performed for all the displacement, velocity, and acceleration are to be

components of all the field variables in the same obtained. The following standard methods of

support domain. For an example taking a 3D solid solving dynamics equation systems can be used:

mechanics problem, the displacement is usually The modal superposition method can be used for
chosen as the field variable, and the displacement vibration types of problems and problems of far
would have three components: displacements inthe x field response to low speed impact with many load

, Y-, and z-directions. The same shape functiarsed cases.

for all three displacement components in the suppo¥ For problems with a single load or few loads, the

domain of the same point. However, there are direct integration method can be used, which uses

situations where different shape functions are dised the FDM for time stepping with implicit and
different field variables. For example, for bending explicit approaches.

problems of beams, plates, and shells, it & The implicit method is more efficient for

advantageous to use different shape functions, relatively slow phenomena of vibration types of

respectively, for deflection and rotation, in problems.

overcoming the so-called shear and membrake The explicit method is more efficient for very fast

locking issues. phenomena, such as impact and explosion.

Step 3: Formation of system equations: For computational fluid dynamics problems, the
The discrete equations of a mesh-free method candiscretized system equations are basically nonijnea
formulated using the shape functions and weak and one needs an additional iteration loop to abtai
weakened-weak forms. These equations are oftée results.

written in nodal matrix form and are assembled into

the global system matrices for the entire proble®. Triangulation:

domain. The procedures for forming system equatio@®nsider a d-dimensional problem domairco€ R°

are different for different mesh-free methods. bounded byI'. By default, we speak of “open”
domain that does not include the boundary of the
Step 4: Solving the global mesh-free equations: domain. When we refer to a “closed” domain welwil

Solving the set of global mesh-free equations, vepecifically use a boX2]=Q N T.
obtain solutions for different types of problems.
Triangulation is the most flexible way to create
1. For static problems, the displacements at all tigckground triangular cells for mesh-free operation
nodes in the entire problem domain are firsthe process can be almost fully automated for 26 an
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even 3D domains with complicated geome
Therefore, it is used in most commercial
processors sing processes such as the widely
Delaunay triangulation.

Concept of the Influence Domain:

The support domain is defined as a domain in
vicinity of a point of interest g that can be, but dot
not have to be, at a node. It is used to includ
nodes for shape function construction fcg. The
extended concept of the support domain mea
particular way to select those nodes, not necdg:
just by distance.

The influence domain is defined as a domain th
node exerts an influence uponworks well for very
irregularly distributed nodes. Influence domaing
defined for each node in the problem domain,
they can be different from node to node to repre
the area of influence of the node, as shown inre-

Figure - 6: Influene domains of nod

In constructing shape functions for point at
(marked with x), nodes whose influence domi
covers x are to be used for construction of st
functions. For example, nodes 1 and 2 are inclu
but node 3 is not included.

Node 1 has an influence radius @f and node 2 he
an influence radius of,r etc. The node will b
involved in the shape function construction for
point that is within its influence domain. For exam
in constructing the shape functions for the p
marked with x at point x (see Figure- 6), nodes 1
and 2 will be used, but node 3 will not be us

The formula to compute the dimension of
influence domain of that node is

2 &
1= oty [ > e
i=1
(2)

Where

r is the radius of the influence domain of no
n, is the number of surrounding triangular c
a Is the area of the ith cell

as 1S a constant scaling with the domain

The fact is that the dimension of the influel
domain, which can be different from node to nc
allows some nodes to have furt influence than
others and prevents unbalanced nodal distributiol
constructing shape functior

As shown in Figure -6, node 1 is included fc
constructing shape functions for the point at pao,
but node 3 is not included, even though node
closer to % compared with node

T-Schemes for Node Selecti

Since the background cells are needed for intexmr
for weak or weakenedreak form mes-free methods,
background cells are often already made avail:
Therefore, it is natural to maluse of them also for
the selection of supporting nodes for shape func
construction. Background cells of triangular t
generated by triangulation have been found
practical, robust,reliable, and efficient for loc:
supporting node selection. Tngular cell-based node
selection schemes are termed ischemes, and are
listed in Table 1.

Table 1- TSchemes for Node Selection Basec
Triangular Background Ce

Node Selection for Interpolation at Any Point
in a Home Cell

Application/Types

Name of Shape Functions

@ IJTSRD | Available Online @ www.ijtsrd.ci| Volume —2 | Issue —5 | Alg 201¢

Tiacheme Three nodes of the home cell 2D domain
3D domain surface
PIM
To/3scheme  For an interior home cell, three nodes of the home cell 2D domain
and three remote nodes of the three neighboring cells 3D domain surface
For a boundary home cell, three nodes of the home cell PIM, RPIM
Té-scheme For an interior home cell, three nodes of the home cell 2D domain
and three remote nodes of the three neighboring cells 3D domain surface
For a boundary home cell, three nodes of the home cell, PIM, RFIM
two (or one) remote nodes of the neighboring cells plus
one (or two) field node which is nearest to the centroid
of the home cell
T4-scheme Four nodes of the home tetrahedral cell 3D domain, FIM
T2l-scheme  Nodes of the home cell plus one layer of nodes of the cells 2D domain
connected to the home cell nodes (two layers of nodes 3D domain surface
are selected) 3D domain
RFIM, MLS
Page: 2358
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In the definition of types of Behemes, a home ¢
refers to the cell which hosthe point of interes
(usually the quadrature sampling point). An inte
home cell is a home cell that has no edge or
boundary of the problem domain and a bouna
home cell is a home cell which has at least one
on the boundary. A neighboringlcef a home cel
refers to the cell which shares one edge with trad
cell.

Figure-7 shows the background triangular cells for
domain. The node selection is then performec
follows.

T3-Scheme:

In the T3scheme, we simply select three nodes ¢
home cell of the point of interest. As illustrated
Fig-7 (a), no matter the point of interest x locate:
an interior home cell (cell i) or a boundary honadi
(cell j), only the three nodes of the home ce¢_i3 or
ji_js) are selected. T3-scheme iused only fo
creating linear PIM (Point Interpolation Methc
shape functions by using polynomial basis functi
Note that the linear PIM shape functions

constructed are exactly the same as those in

using linear triangular elements.

T4-Scheme:

T4-scheme is the analogy of the 3cheme, but c
node selection for 3D domains with tetrahei
background cells.

T6/3-Scheme:

The T6/3scheme selects six nodes to interpola
point of interest located in an interior cell artee
nodes for those lated in boundary home cells. .
illustrated in Figure? (b), when the point of intere
Xq Is located in an interior home cell (cell i), weesg
six nodes: three nodes of the home ce¢_i3) and
another three nodes located at the remote vertit
the three neighboring cells, (ig). When the point ¢
interest at ¥ is located in a boundary home cell (c
j), we select only three nodes of the home cedl,

Ja_Js-

T6/3-scheme was purposely devised for creating-
order PIM shape functions, wherequadratic
interpolations are performed for the interior hc
cells and linear interpolations for boundary hc

cells. This scheme was first used in the-PIM [11].
It can not only successfully overcome the sing

problem but also improve the efficiencof the
method.

i
i i
— N s TN J‘a
;)
©x b} - d B i X
L Cell i - b Ilo' L Celli c@]‘[‘?
ellj ell}
/
i ! i ) ! -
— i i i
(@) L]
i %
iy
T — % J3 TN
®% At~ [ Bxg '
€, |cdi/ ~ C@;‘f e Celli
iy N -
— — Jo I T ——
(c) (6]

|O First layer of nodes ¢ : Secondlayerofnodes|

Figure -7 (a) T3 Scheme, (IT6/3-Scheme, (C)6-
Scheme (d) & (e)T2L-Scheme

T6-Scheme:

Similar to T6/3scheme, T-scheme, as shown in
Figure-7 (c), also selects six nodes for an inte
home cell: three nodes of the home cell three
vertexes at the remote vertices of the three |
boring cells (i_ig for cell i). However, for a boundal
cell (cell j), Téscheme still selects six nodes: th
nodes of the home celly(js), two remote nodes of
the neigh boring cells {jand s), and one field node
(js) which is nearest to the centroid of the home
excepting the five nodes that have been sele

T6-scheme is purposely devised for construc
radial PIM (RPIM) shape functions on consider
both accuracy and efficiency. Ferent from T6/3-
scheme, this scheme selects six nodes for all |
cells containing the point of intere
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T2L-Scheme: irregular triangles, Submitted to Int. J. Numerical
T2L-scheme selects two layers of nodes to perform Methods Fluids, 2008.

interpolation based on triangular meshes. As ShownlO.Xu, G. X. and Liu G. R., An adaptive gradient

Figure-7 (d) and (e), the first layer of nodes refilne smoothing method (GSM) for fluid dynamics
three nodes of the home cell, and the second Iayerproblems, Int. J. Numerical Methods Fluids,

contains those nodes which are directly connecied t

the three nodes of the first layer. This schemallsu accepted, 2008.
selects much more nodes than the T6-scheme dddliu, G. R., Liu, M. B, and Lam, K. Y., A general

leads to more time consumption. We can use this approach for constructing smoothing functions for
scheme to create RPIM shape functions with high meshfree  methods, presented at Ninth
order of consistence and for extremely irregularly International Conference on Computing in Civil
distributed nodes. Such RPIM shape functions can and Building Engineering, Taipei, China, April 3—
also be used for strong form mesh-free method 5, 2002, pp. 431-436.

methods where higher order of consistence {$ |ju W. K. Adee. J.. and Jun. S. Reproducing
required. T2L-scheme can also be used for creating yemel and wavelet particle methods for elastic

moving least squares (MLS) shape functions. and plastic problems, in Advanced Computational
Methods for Material Modeling, Benson, D. J.,
REFERENCES ed., AMD 180=PVP 268 ASME, New Orleans,

1. Lucy, L., A numerical approach to testing the | A 1993, pp. 175-190.

fission hypothesis, Astronomical J., 82, 1013- )
1024, 1977. 13.Liu, W. K., Jun, S., and Zhang, Y., Reproducing

, kernel particle methods, Int. J. Numerical
2. Glngold, R. A. and_ Monaghan, J. J., _Sm(_)oth Methods Fluids, 20, 1081-1106, 1995.
particle hydrodynamics: Theory and applications
to non-spherical stars, Mon. Notices R4.Liu, W. K., Chen, Y, Chang, C. T, and
Astronomical Soc., 181, 375-389, 1977. Belytschko, T., Advances in multiple scale kernel

, particle methods, Comput. Mech., 18, 73-111,
3. Monaghan, J. J., Why particle methods work, 19gg.

Siam J. Sci. Stat. Comput., 3(4), 423-433, 1982. : B
15.Liu, W. K., Jun, S., Sihling, D. T., Chen, Y. J.,

4. Liu, M. B, Liu, G. R., and Zong, Z., An OVerview - and Hao, W., Multiresolution reproducing kernel
on smoothed particle hydrodynamics, Int. J.  naricle method for computational fluid dynamics,
Comput. Methods, 5(1), 135-188, 2008. Int. J. Numerical Methods Fluids, 24, 1-25, 1997.

5. Zhou, C. E., Liu, G. R, and Lou, K. Y., Three4g | i, w. K., Jun, S., Sihling, D. T., Chen, Y. J.,
dimensional ~ penetration  simulation  using  gng Hao, W., Multi resolution reproducing kernel
smoothed particle hydrodynamics, Int. J. Comput. 4 ticle method for computational fluid dynamics,

Methods, 4(4), 671-691, 2007. Int. J. Numerical Methods Fluids, 24, 1391-1415,
6. Liu, G. R. and Liu, M. B., Smoothed Particle 1997.

Hydrodynamics—A Mesh free Practical Method17_|_iu, W. K., Li, S. F., and Belytschko, T., Moving

World Scientific, Singapore, 2003. least-square reproducing kernel methods: |
7. Liu, G. R., Zhang, J., and Lam, K. Y., A gradient Methodology and convergence, Comput. Methods

smoothing method (GSM) with directional Appl. Mech. Eng., 143, 113-154, 1997.

correction for solid mechanics problems, Compui-S.Chen, J.S. Pan, C., Wu, C. T., and Liu, W. K.,

Mech., 41, 457472, 2008. Reproducing kernel particle methods for large

8. Liu, G. R. and Xu, G. X., A gradient smoothing deformation analysis of nonlinear structures,
method (GSM) for fluid dynamics problems, Int. Comput. Methods Appl. Mech. Eng., 139, 195-
J. Numerical Methods Fluids, 56(10), 1101-1133, 228, 1996.

2008. 19.Uras, R. A,, Chang, C. T., Chen, Y., and Liu, W.

9. Xu, G. X,, Liu, G. R., and Lee, K. H., Application K., Multi resolution reproducing kernel particle
of gradient smoothing method (GSM) for steady methods in acoustics, J. Comput. Acoust., 5(1),
and unsteady incompressible flow problems using 71-94, 1997.

@ IJTSRD | Available Online @ www.ijtsrd.com plMme — 2 | Issue —5 | Jul-Aug 2018 Page: 2360



International Journal of Trend in Scientific Resdaand Development (IJTSRD) ISSN: 2456-6470

20.Lancaster, P. and Salkauskas, K., Surfac2d.Krongauz, Y. and Belytschko, T., Enforcement of
generated by moving least squares methods, Math. essential boundary conditions in mesh less
Comput., 37, 141-158, 1981. approximations using finite elements, Comput.

21.Cleveland, W. S., Visualizing Data, AT&T Bell g/lgeg;tgods Appl. Mech. Eng., 131(1-2), 133-145,
Laboratories, Murray Hill, NJ, 1993. :

22.Nayroles, B., Touzot, G., and Villon, P.,ZS'BEMSChkO’ T, Gu, L., and Lu, Y. Y., Fractur_e
Generalizing the finite element method: Diffuse and crack grovvth. by lelement free_GaIerkln
approximation and diffuse elements, Comput. methods, Model. Simulations Mater. Sci. Eng., 2,
Mech., 10, 307-318, 1992. 519-534, 1994.

23.Belytschko, T., Lu, Y. Y., and Gu, L., Element-
free Galerkin methods, Int. J. Numerical Methods
Eng., 37, 229-256, 1994.

@ IJTSRD | Available Online @ www.ijtsrd.com plMme —2 | Issue —5 | Jul-Aug 2018 Page: 2361



