Integral Root Labeling of \mathbf{P}_{m} UG Graphs

V. L. Stella Arputha Mary ${ }^{1}$, N. Nanthini ${ }^{2}$
${ }^{1}$ Department of Mathematics, ${ }^{2}$ M.phil Scholar
St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India

ABSTRACT

Let $G=(V, E)$ be a graph with p vertices and q edges. Let $f: V \rightarrow\{1,2, \ldots q+1\}$ is called an Integral Root labeling if it is possible to label all the vertices $v \in V$ with distinct elements from $\{1,2, \ldots q+1\}$ such that it induces an edge labeling $f^{+}: E \rightarrow\{1,2, \ldots q\}$ defined as
$f^{+}(u v)=\left\lceil\sqrt{\frac{(f(u))^{2}+(f(v))^{2}+f(u) f(v)}{3}}\right\rceil$ is distinct for all $u v \in E$. (i.e.) The distinct vertex labeling induces a distinct edge labeling on the graph. The graph which admits Integral Root labeling is called an Integral Root Graph.
In this paper, we investigate the Integral Root labeling of $P_{m} \cup G$ graphs like $P_{m} \cup P_{n}, P_{m} \cup\left(P_{n} \odot K_{1}\right), P_{m} \cup$ $L_{n}, P_{m} \cup\left(P_{n} \odot K_{1,2}\right), P_{m} \cup\left(P_{n} \odot K_{1,3}\right), P_{m} \cup\left(P_{n} \odot K_{1}\right) \odot K_{1,2}$

Key words: $P _m U P _n, P _m U\left(P _n \mathcal{O}_{-} 1\right), P _m U L _n, P _m U\left(P _n \odot K_{-} 1,2\right), P _m U\left(P _n \odot K_{-} 1,3\right), P _m U\left(T _n\right.$ $\left.\odot K_{-} 1\right), P _m U\left(P _n \odot K _1\right) \odot K _1,2$

INTRODUCTION

The graph considered here will be finite, undirected and simple. The vertex set is denoted by $V(G)$ and the edge set is denoted by $E(G)$. For all detailed survey of graph labeling we refer to Gallian [1]. For all standard terminology and notations we follow Haray [2]. V.L Stella Arputha Mary and N.Nanthini introduced the concept of Integral Root Labeling of graphs in [8]. In this paper we investigate Integral Root labeling of $P_{m} \cup G$ graphs. The definitions and other informations which are useful for the present investigation are given below.

BASIC DEFINITIONS

Definition: 3.1
A walk in which $u_{1}, u_{2}, \ldots u_{n}$ are distinct is called a Path. A path on n vertices is denoted by P_{n}

Definition: 3.2

The graph obtained by joining a single pendent edge to each vertex of a path is called a Comb.

Definition: 3.3

The Cartesian product of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=(V, E)$ with $V=V_{1} \times V_{2}$ and two vertices $u=\left(u_{1} u_{2}\right)$ and $v=\left(v_{1} v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever ($u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}) or $\left(u_{2}=v_{2}\right.$ and u_{1} is adjacent to v_{1}). It is denoted by $G_{1} \times G_{2}$.

Definition: 3.4

The Corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of G_{1} and $\left|\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition: 3.5

The product graph $P_{2} \times P_{n}$ is called a Ladder and it is denoted by L_{n}

Definition: 3.6

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} \cup G_{2}$ with vertex set $V=V_{1} \cup V_{2}$ and the edge set $E=E_{1} \cup E_{2}$.

Definition: 3.7
The graph $P_{n} \odot K_{1,2}$ is obtained by attaching $K_{1,2}$ to each vertex of P_{n}.

Definition: 3.8

The graph $P_{n} \odot K_{1,3}$ is obtained by attaching $K_{1,3}$ to each vertex of P_{n}.

Definition: 3.9

A graph that is not connected is disconnected. A graph G is said to be disconnected if there exist two nodes in G such that no path in G has those nodes as endpoints. A graph with just one vertex is connected. An edgeless graph with two (or) more vertices is disconnected

MAIN RESULTS

Theorem: 4.1

$P_{m} \cup P_{n}$ is an Integral Root graph.

Proof:

Let $P_{m}=u_{1}, u_{2}, \ldots, u_{m}$ be a path on m vertices.
Let $P_{n}=v_{1}, v_{2}, \ldots ., v_{n}$ be another one path on n vertices.
Let $G=P_{m} \cup P_{n}$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=i ; \quad 1 \leq i \leq m \\
f\left(v_{i}\right)=m+i ; \quad 1 \leq i \leq n .
\end{array}
$$

Then we find the edge labels

$$
\begin{aligned}
& f^{+}\left(u_{i} u_{i+1}\right)=i ; 24501 \leq i \leq m-1 ; \\
& f^{+}\left(v_{i} v_{i+1}\right)=m+i ; 1 \leq i \leq n-1 .
\end{aligned}
$$

Then the edge labels are distinct.
Hence $P_{m} \cup P_{n}$ is a Integral Root graph.
Example: 4.2
An Integral Root labeling of $P_{5} \cup P_{6}$ is show below.

Figure: 1

Theorem: 4.3

$P_{m} \cup\left(P_{n} \odot K_{1}\right)$ is a Integral Root graph.

Proof:

Let $P_{n} \odot K_{1}$ be a Comb graph obtained from a path $P_{n}=v_{1}, v_{2}, \ldots, v_{n}$ by joining a vertex u_{i} to $v_{i}, \quad 1 \leq i \leq n$.
Let $P_{m}=w_{1}, w_{2}, \ldots, w_{m}$ be a path.
Let $G=P_{m} \cup\left(P_{n} \odot K_{1}\right)$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots ., q+1\}$ by

$$
\begin{array}{ll}
f\left(w_{i}\right)=i ; & 1 \leq i \leq m ; \\
f\left(v_{i}\right)=m+2 i-1 ; & 1 \leq i \leq n ; \\
f\left(u_{i}\right)=m+2 i ; & 1 \leq i \leq n
\end{array}
$$

Then we find the edge labels are

$$
\begin{array}{ll}
f^{+}\left(w_{i} w_{i+1}\right)=i ; & 1 \leq i \leq m-1 ; \\
f^{+}\left(v_{i} v_{i+1}\right)=m+2 i ; & 1 \leq i \leq n-1 ; \\
f^{+}\left(v_{i} u_{i}\right)=m+2 i-1 ; & 1 \leq i \leq n-1
\end{array}
$$

Then the edge labels are distinct.
Hence $P_{m} \cup\left(P_{n} \odot K_{1}\right)$ is an Integral Root graph.

Example: 4.4

An Integral Root labeling of $P_{5} \cup\left(P_{5} \odot K_{1}\right)$ is given below.

Figure: 2
Theorem: 4.5

$$
P_{m} \cup L_{n} \text { is an Integral Root graph. }
$$

Proof:

Let $P_{m}=u_{1}, u_{2}, \ldots ., u_{m}$ be a path.
Let $\left\{v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}\right\}$ be the vertices of ladder.
efine a function $f: V(G) \rightarrow\{1,2, \ldots ., q+1\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=i ; & 1 \leq i \leq m ; \\
f\left(v_{i}\right)=m+3 i-2 ; & 1 \leq i \leq n ; \\
f\left(w_{i}\right)=m+3 i-1 ; & 1 \leq i \leq n .
\end{array}
$$

Then we find the edge labels

$$
\begin{array}{cc}
f^{+}\left(u_{i} u_{i+1}\right)=i ; & 1 \leq i \leq m-1 ; \\
f^{+}\left(v_{i} v_{i+1}\right)=m+3 i-1 ; & 1 \leq i \leq n-1 ; \\
f^{+}\left(w_{i} w_{i+1}\right)=m+3 i ; & 1 \leq i \leq n-1 . \\
f^{+}\left(v_{i} w_{i}\right)=m+3-2 i ; & 1 \leq i \leq n .
\end{array}
$$

Then the edge labels are distinct.
Hence $P_{m} \cup L_{n}$ is an Integral Root graph.
Example: 4.6

Figure: 3
Theorem: 4.7
$P_{m} \cup\left(P_{n} \odot K_{1,2}\right)$ is a Integral Root graph.

Proof:

Let $P_{n} \circlearrowleft K_{1,2}$ be a graph obtained by attaching each vertex of a path P_{n} to the central vertex of $K_{1,2}$. Let $P_{n}=v_{1}, v_{2}, \ldots, v_{n}$ be a path.
Let w_{i} and x_{i} be the vertices of $K_{1,2}$ which are attaching with the vertex v_{i} of P_{n} $1 \leq i \leq n$.

Let $P_{m}=u_{1}, u_{2}, \ldots, u_{m}$ be a path.
Let $G=P_{m} \cup\left(P_{n} \odot K_{1,2}\right)$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots ., q+1\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=i ; & 1 \leq i \leq m ; \\
f\left(v_{i}\right)=m+3 i-1 ; & 1 \leq i \leq n ; \\
f\left(w_{i}\right)=m+3 i-2 ; & 1 \leq i \leq n ; \\
f\left(x_{i}\right)=m+3 i ; & 1 \leq i \leq n
\end{array}
$$

Then we find the edge labels are

$$
\begin{aligned}
f^{+}\left(u_{i} u_{i+1}\right) & =i ; \quad 1 \leq i \leq m-1 ; \\
f^{+}\left(v_{i} v_{i+1}\right) & =m+3 i ; \quad 1 \leq i \leq n-1 ; \\
f^{+}\left(v_{i} w_{i}\right) & =m+3 i-2 ; 1 \leq i \leq n ; \\
f^{+}\left(x_{i} v_{i}\right) & =m+3 i-1 ; 1 \leq i \leq n .
\end{aligned}
$$

Hence $P_{m} \cup\left(P_{n} \odot K_{1,2}\right)$ is a Integral Root graph.

Example: 4.8

An Integral Root labeling of $P_{5} \cup\left(P_{3} \odot K_{1,2}\right)$ is given below.

Figure: 4

Theorem: 4.9

$$
P_{m} \cup\left(P_{n} \odot K_{1,3}\right) \text { is a Integral Root graph. }
$$

Proof:

Let $P_{n} \odot K_{1,2}$ be a graph obtained by attaching each vertex of a path P_{n} to the central vertex of $K_{1,3}$.
Let $P_{n}=w_{1}, w_{2}, \ldots, w_{n}$ be a path.
Let v_{i}, x_{i} and y_{i} be the vertices of $K_{1,3}$ which are attaching with the vertex w_{i} of P_{n}

$$
1 \leq i \leq n
$$

Let $P_{m}=u_{1}, u_{2}, \ldots, u_{m}$ be a path.
Let $G=P_{m} \cup\left(P_{n} \odot K_{1,3}\right)$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots ., q+1\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=i ; & 1 \leq i \leq m ; \\
f\left(v_{i}\right)=m+4 i-3 ; & 1 \leq i \leq n \\
f\left(w_{i}\right)=m+4 i-2 ; & 1 \leq i \leq n \\
f\left(x_{i}\right)=m+4 i-1 ; & 1 \leq i \leq n \\
f\left(y_{i}\right)=m+4 i ; & 1 \leq i \leq n
\end{array}
$$

Then we find the edge labels are

$$
\begin{gathered}
f^{+}\left(u_{i} u_{i+1}\right)=i ; \quad 1 \leq i \leq m-1 ; \\
f^{+}\left(w_{i} w_{i+1}\right)=m+4 i ; \quad 1 \leq i \leq n-1 ; \\
f^{+}\left(v_{i} w_{i}\right)=m+4 i-3 ; \quad 1 \leq i \leq n ; \\
f^{+}\left(x_{i} w_{i}\right)=m+4 i-2 ; \quad 1 \leq i \leq n \\
f^{+}\left(y_{i} w_{i}\right)=m+4 i-1 ; \quad 1 \leq i \leq n
\end{gathered}
$$

Then the edge labels are distinct.
Hence $P_{m} \cup\left(P_{n} \odot K_{1,3}\right)$ is a Integral Root graph.

Example: 4.10

An Integral Root labeling of $P_{5} \cup\left(P_{3} \odot K_{1,3}\right)$ is given below.

Figure: 5
Theorem: $\mathbf{4 . 1 1}$

$$
P_{m} \cup\left(P_{n} \odot K_{1}\right) \odot K_{1,2} \text { is a Integral root graph. }
$$

Proof:

Let $G=P_{m} \cup\left(P_{n} \odot K_{1}\right) \odot K_{1,2}$.
Let $P_{m}=u_{1}, u_{2}, \ldots, u_{m}$ be a path.
Let G_{2} be a comb and G_{1} be the obtained by attaching $K_{1,2}$ at each pendant vertex of G_{2}.
Let its vertices be $v_{i}, w_{i}, x_{i}, y_{i} \quad 1 \leq i \leq n$.
Define a function $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=i ; 2 & 1 \leq i \leq m ; \\
f\left(v_{i}\right)=m+5 i-3 ; & 1 \leq i \leq n ; \\
f\left(w_{i}\right)=m+5 i-4 ; & 1 \leq i \leq n ; \\
f\left(x_{i}\right)=m+5 i-2 ; & 1 \leq i \leq n ; \\
f\left(y_{i}\right)=m+5 i ; & 1 \leq i \leq n .
\end{array}
$$

Then we find edge labels are

$$
\begin{aligned}
f^{+}\left(u_{i+1} u_{i}\right) & =i ; \quad 1 \leq i \leq m-1 ; \\
f^{+}\left(v_{i+1} v_{i}\right) & =m+5 i-1 ; \quad 1 \leq i \leq n-1 ; \\
f^{+}\left(v_{i} w_{i}\right) & =m+5 i-4 ; \quad 1 \leq i \leq n ; \\
f^{+}\left(w_{i} x_{i}\right) & =m+5 i-3 ; \quad 1 \leq i \leq n ; \\
f^{+}\left(w_{i} y_{i}\right) & =m+5 i-2 ; \quad 1 \leq i \leq n .
\end{aligned}
$$

Then the edge labels are distinct.
Hence $P_{m} \cup\left(P_{n} \odot K_{1}\right) \odot K_{1,2}$ is an Integral Root graph.
Example: 4.12
An Integral Root labeling of $P_{5} \cup\left(P_{4} \odot K_{1}\right) \odot K_{1,2}$ is given below.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Figure: 6

REFERENCE

1. J. A. Gallian, 2010, "A dynamic Survey of graph labeling," The electronic Journal of Combinatories17\#DS6.
2. F. Harary, 1988, "Graph Theory," Narosa Publishing House Reading, New Delhi.
3. S. Sandhya, S. Somasundaram, S. Anusa, "Root Square Mean labeling of graphs," International Journal of Contemporary Mathematical Science, Vol.9, 2014, no.667-676.
4. S. S. Sandhya, E. Ebin Raja Merly and S. D. Deepa, "Heronian Mean Labeling of Graphs", communicated to International journal of Mathematical Form.
5. S. Sandhya, E. Ebin Raja Merly and S. D. Deepa, "Some results On Heronian Mean Labeling of Graphs", communicated to Journal of Discrete Mathematical Science of crypotography.
6. S. Sandhya, S. Somasundaram, S. Anusa, "Root Square Mean labeling of Some Disconnected graphs," communicated to International Journal of Mathematical Combinatorics.
7. S. S. Sandhya, S.Somasundaram and A.S.Anusa, "Root Mean Labeling of Some New Disconnected Graphs", communicated to International journal of Mathematical Tends and Technology, Volume 15 no. 2 (2014) Pg no. 85-92.
8. V. L Stella Arputha Mary, and N. Nanthini, "Integral Root labeling of graph" International Journal of Mathematics Trends Technology(IJMTT), vol.54, no.6(2018), pp.437-442.
