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ABSTRACT 
Let � � ��, �� be a graph with � vertices and 
labeling if it is possible to label all the vertices 
induces an edge labeling 	
: � → 1,2, …
	
���� � ���������
�������
��������� � is distinct for all 

distinct edge labeling on the graph. The graph which
Graph. 
 

In this paper, we investigate the Integral Root labeling of ��,�� ∪ ���ʘ !,"�, �� ∪ ���ʘ !,��, ��
 
Key words: P_m∪P_n, P_m∪(P_n ʘK_1), P_m
ʘK_1), P_m∪(P_n ʘK_1)ʘK_1,2 
 
INTRODUCTION 
The graph considered here will be finite, undirected and simple.  The vertex set is denoted by 
edge set is denoted by����.  For all detailed survey of gr
terminology and notations we follow Haray [
concept of Integral Root Labeling of graphs in [8].  In this paper we investigate Integral Root la�� ∪ �		graphs.  The definitions and other informations which are useful for the present investigation are given 
below. 
 
BASIC DEFINITIONS 
Definition: 3.1 
A walk in which �!, �", … �� are distinct is called a 
 
Definition: 3.2 
The graph obtained by joining a single pendent edge to each vertex of a path is called a 
 
Definition: 3.3 
The Cartesian product of two graphs �
vertices �=(�1�2) and �=(�1�2) are adjacent in 
is adjacent to �1) .It is denoted by �1×�2

 
Definition: 3.4 
The Corona of two graphs �1 and �2 is the graph 
of �2 where the ith vertex of �1 is adjacent to every vertex in the 
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vertices and $	edges.  Let 	: � → 1,2, … $ % 1& is called an 
if it is possible to label all the vertices � ∈ � with distinct elements from 1 … $& defined as 										 

� is distinct for all �� ∈ �.		(i.e.) The distinct vertex labeling induces a 

distinct edge labeling on the graph. The graph which admits Integral Root labeling is called an 

stigate the Integral Root labeling of �� ∪ �		graphs like�� ∪
� ∪ ���ʘ !�ʘ !," 
K_1), P_m∪L_n, P_m∪(P_n ʘK_1,2), P_m∪(P_n 

The graph considered here will be finite, undirected and simple.  The vertex set is denoted by 
.  For all detailed survey of graph labeling we refer to Gallian [1].  For all standard 
we follow Haray [2].  V.L Stella Arputha Mary and N.Nanthini introduced the 

concept of Integral Root Labeling of graphs in [8].  In this paper we investigate Integral Root la
graphs.  The definitions and other informations which are useful for the present investigation are given 

are distinct is called a Path. A path on ) vertices is denoted by 

The graph obtained by joining a single pendent edge to each vertex of a path is called a 

�1=(�1,�1) and �2=(�2,�2) is a graph �=(�,�) with 
) are adjacent in �1×�2 whenever (�1=�1and �2 is adjacent to 

2. 

is the graph �=�1⨀�2 formed by taking one copy of 
is adjacent to every vertex in the ith copy of �2. 
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& is called an Integral Root 1,2, … $ % 1& such that it 

(i.e.) The distinct vertex labeling induces a 

admits Integral Root labeling is called an Integral Root  

��,�� ∪ ���ʘ !�, �� ∪

(P_n ʘK_1,3), P_m∪(T_n 

The graph considered here will be finite, undirected and simple.  The vertex set is denoted by ���� and the 
aph labeling we refer to Gallian [1].  For all standard 

2].  V.L Stella Arputha Mary and N.Nanthini introduced the 
concept of Integral Root Labeling of graphs in [8].  In this paper we investigate Integral Root labeling of 

graphs.  The definitions and other informations which are useful for the present investigation are given 

oted by �� 

The graph obtained by joining a single pendent edge to each vertex of a path is called a Comb.  

) with �=�1×�2 and two 
is adjacent to �2) or (�2=�2and �1 

rmed by taking one copy of �1 and |(�1)| copies 
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Definition: 3.5 
The product graph �" × �� is called a Ladder and it is denoted by	�� 
 
Definition: 3.6 
The union of two graphs �! � ��!, �!)  and �" = (�", �") is a graph � = �! ∪ �" with vertex set � = �! ∪ �"  
and the edge set � = �! ∪ �". 
 
Definition: 3.7 
The graph ��ʘ !," is obtained by attaching  !," to each vertex of ��. 
 
Definition: 3.8 
The graph ��ʘ !,� is obtained by attaching  !,� to each vertex of ��. 
 
Definition: 3.9 
A graph that is not connected is disconnected.  A graph  � is said to be disconnected if there exist two nodes in 
� such that no path in � has those nodes as endpoints.  A graph with just one vertex is connected.  An edgeless 
graph with two (or) more vertices is disconnected 
 
MAIN RESULTS 
Theorem: 4.1 
�� ∪ ��  is an Integral Root graph. 
 
Proof: 
Let �� = �!, �", … . , �� be a path on , vertices. 
Let �� = �!, �", … . , ��  be another one path on ) vertices. 
Let � = �� ∪ ��. 
Define a function 	: �(�) → {1,2, … , $ + 1} by  

	(�-) = .; 											1 ≤ . ≤ ,; 
	(�-) = , + .; 			1 ≤ . ≤ ). 

Then we find the edge labels 
	
(�-�-
!) = .; 												1 ≤ . ≤ , − 1; 
	
(�-�-
!) = , + .; 			1 ≤ . ≤ ) − 1. 

Then the edge labels are distinct. 
Hence �� ∪ ��  is a Integral Root graph. 
 
Example: 4.2 

An Integral Root labeling of  �2 ∪ �3 is show below. 

 
Figure: 1 

 
Theorem: 4.3 
�� ∪ (��ʘ !) is a Integral Root graph. 
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Proof: 
Let ��ʘ ! be a Comb graph obtained from a path �� = �!, �", … . , �� by joining a vertex �- to �- ,					1 ≤ . ≤ ). 
Let �� = 4!, 4", … , 4�  be a path. 
Let � = �� ∪ (��ʘ !). 
Define a function  	: �(�) → {1,2, … . , $ + 1} by  

	(4-) = .; 																						1 ≤ . ≤ ,; 
	(�-) = , + 2. − 1; 			1 ≤ . ≤ ); 
	(�-) = , + 2.; 									1 ≤ . ≤ ). 

                 
Then we find the edge labels are  

	
(4-4-
!) = .; 																	1 ≤ . ≤ , − 1; 
	
(�-�-
!) = , + 2.; 					1 ≤ . ≤ ) − 1; 
	
(�-�-) = , + 2. − 1; 		1 ≤ . ≤ ) − 1. 

Then the edge labels are distinct. 
Hence �� ∪ (��ʘ !) is an Integral Root graph. 
 
Example: 4.4 

An Integral Root labeling of  �2 ∪ (�2ʘ !)  is given below. 

 
Figure: 2 

 
Theorem: 4.5 

�� ∪ �� is an Integral Root graph. 
 
Proof: 
Let  �� = �!, �", … . , ��  be a path. 
Let {�!, �", … , ��	, 4!, 4", … . . , 4�} be the vertices of ladder. 
efine a function  	: �(�) → {1,2, … . , $ + 1} by 
 

	(�-) = .; 																							1 ≤ . ≤ ,; 
	(�-) = , + 3. − 2; 			1 ≤ . ≤ ); 
	(4-) = , + 3. − 1; 	1 ≤ . ≤ ). 
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Then we find the edge labels  
	
(�-�-
!) = .; 																				1 ≤ . ≤ , − 1; 
	
(�-�-
!) = , + 3. − 1; 		1 ≤ . ≤ ) − 1; 
	
(4-4-
!) = , + 3.; 								1 ≤ . ≤ ) − 1. 
	
(�-4-) = , + 3 − 2.; 								1 ≤ . ≤ ). 

 
Then the edge labels are distinct. 
Hence �� ∪ �� is an Integral Root graph. 
 
Example: 4.6 

An Integral Root labeling of  �2 ∪ �2 is displayed below. 

 
Figure: 3 

 
Theorem: 4.7 
  �� ∪ (��ʘ !,") is a Integral Root graph. 
 
Proof: 
Let ��ʘ !," be a graph obtained by attaching each vertex of a path ��  to the central vertex of  !,". 
Let �� = �!, �", … , ��  be a path. 
Let 4- and 6- be the vertices of  !," which are attaching with the vertex �- of ��		 
1 ≤ . ≤ ) . 

Let �� = �!, �", … . , �� be a path. 
Let � = �� ∪ (��ʘ !,"). 

 
Define a function  	: �(�) → {1,2, … . , $ + 1} by 

	(�-) = .; 																							1 ≤ . ≤ ,; 
	(�-) = , + 3. − 1; 				1 ≤ . ≤ ); 
	(4-) = , + 3. − 2; 			1 ≤ . ≤ ); 
	(6-) = , + 3.; 												1 ≤ . ≤ ). 
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Then we find the edge labels are  
	
(�-�-
!) = .; 																	1 ≤ . ≤ , − 1; 
	
(�-�-
!) = , + 3.; 						1 ≤ . ≤ ) − 1; 
	
(�-4-) = , + 3. − 2; 		1 ≤ . ≤ ); 
	
(6-�-) = , + 3. − 1; 		1 ≤ . ≤ ). 

Hence �� ∪ (��ʘ !,") is a Integral Root graph. 
 
Example: 4.8 

An Integral Root labeling of  �2 ∪ (��ʘ !,")  is given below. 

 
Figure: 4 

 
Theorem: 4.9 
 �� ∪ (��ʘ !,�) is a Integral Root graph. 
 
Proof: 
             Let ��ʘ !," be a graph obtained by attaching each vertex of a path ��  to the central vertex of  !,�. 
              Let �� = 4!, 4", … , 4�  be a path. 
               Let �-, 6- 	and 7- be the vertices of  !,� which are attaching with the vertex 4- of ��		 

1 ≤ . ≤ ) . 
Let �� = �!, �", … . , �� be a path. 

Let � = �� ∪ (��ʘ !,�). 
 
Define a function  	: �(�) → {1,2, … . , $ + 1} by 

	(�-) = .; 																							1 ≤ . ≤ ,; 
	(�-) = , + 4. − 3; 				1 ≤ . ≤ ); 
	(4-) = , + 4. − 2; 			1 ≤ . ≤ ); 
	(6-) = , + 4. − 1; 				1 ≤ . ≤ ); 
	(7-) = , + 4.; 												1 ≤ . ≤ ). 

 
Then we find the edge labels are 

	
(�-�-
!) = .; 																		1 ≤ . ≤ , − 1; 
	
(4-4-
!) = , + 4.; 					1 ≤ . ≤ ) − 1; 
	
(�-4-) = , + 4. − 3; 			1 ≤ . ≤ ); 
	
(6-4-) = , + 4. − 2; 			1 ≤ . ≤ ); 
	
(7-4-) = , + 4. − 1; 			1 ≤ . ≤ ). 

Then the edge labels are distinct. 
Hence �� ∪ (��ʘ !,�) is a Integral Root graph. 
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Example: 4.10 
An Integral Root labeling of  �2 ∪ (��ʘ !,�)  is given below. 

 
Figure: 5 

 
Theorem: 4.11 

�� ∪ (��ʘ !)ʘ !," is a Integral root graph. 
 
Proof: 
Let  � = �� ∪ (��ʘ !)ʘ !,". 
Let �� = �!, �", … . , �� be a path. 
Let �" be a comb and �! be the obtained by attaching  !," at each pendant vertex of �". 
Let its vertices be �- , 4-, 6- , 7-						1 ≤ . ≤ ). 
 
Define a function 	: �(�) → {1,2, … . , $ + 1} by  

	(�-) = .; 																														1 ≤ . ≤ ,; 
	(�-) = , + 5. − 3; 											1 ≤ . ≤ ); 
	:4 .

-; = , + 5. − 4; 									1 ≤ . ≤ ); 
	(6-) = , + 5. − 2; 									1 ≤ . ≤ ); 
	(7-) = , + 5.; 																1 ≤ . ≤ ). 

 
Then we find edge labels are  

	
(�-
!�-) = .; 																				1 ≤ . ≤ , − 1; 
	
(�-
!�-) = , + 5. − 1; 	1 ≤ . ≤ ) − 1; 
	
(�-4-) = , + 5. − 4; 					1 ≤ . ≤ ); 
	
(4-6-) = , + 5. − 3; 				1 ≤ . ≤ ); 
	
(4-7-) = , + 5. − 2; 				1 ≤ . ≤ ). 

                  
Then the edge labels are distinct. 
Hence  �� ∪ (��ʘ !)ʘ !," is an Integral Root graph. 
 
Example: 4.12 

An Integral Root labeling of  �2 ∪ (�<ʘ !)ʘ !," is given below. 
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Figure: 6 
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