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ABSTRACT 
We investigated the intracellular delay effect on the 
stability of the endemically infected steady state by 
analyzing a nonlinear ordinary differential equation 
model of hepatitis B virus (HBV) infection that 
considers the interaction betweena replicating virus, 
hepatocytes and the cytotoxic T lymphocytes (CTL). 
We gave a criterion to ensure that the infected steady 
state is asymptotically stable for all delays. A critical 
delay below which the CTL (immune control 
mechanism) can be significantly helpful in controlling 
the HBV infection even when the basic reproduction 
number is high is allowed in the analysis.

KEYWORD: Delay differential Equation, Critical 
Delay, Hepatitis B Virus, immune system

I. INTRODUCTION 
Hepatitis B virus (HBV) infection is a major health 
problem worldwide and despite the presence of 
hepatitis B vaccine, new HBV infections remain 
common. HBV is a hepatotropic double stranded 
DNA virus belonging to the hepadnaviridae family. 
One of the five hepatitis viruses, HBV causes acute 
and chronic hepatitis in humans. Acute HBV infection 
causes only mild symptoms. Majority of infected 
adults successfully clear the virus and acquires 
lifelong immunity. It takes about 1 to 6 months from 
the time of infection for the disease to manifest itself 
and early symptoms include nausea and vomiting, loss 
of appetite, fatigue, with dark urine and light stools 
follows. Only about one percent of patients infected 
with hepatitis B virus die due to liver damage in thei
early stage (Poynard, 2002). The risk of becoming 
chronically infected depends on the age at the time of 
infection. More than 90 percent of new born, 50 
percent of children, 5 percent of adults infected with 
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Hepatitis B virus (HBV) infection is a major health 
problem worldwide and despite the presence of 
hepatitis B vaccine, new HBV infections remain 
common. HBV is a hepatotropic double stranded 
DNA virus belonging to the hepadnaviridae family. 

hepatitis viruses, HBV causes acute 
and chronic hepatitis in humans. Acute HBV infection 
causes only mild symptoms. Majority of infected 
adults successfully clear the virus and acquires 
lifelong immunity. It takes about 1 to 6 months from 

ction for the disease to manifest itself 
and early symptoms include nausea and vomiting, loss 
of appetite, fatigue, with dark urine and light stools 
follows. Only about one percent of patients infected 
with hepatitis B virus die due to liver damage in their 
early stage (Poynard, 2002). The risk of becoming 
chronically infected depends on the age at the time of 
infection. More than 90 percent of new born, 50 
percent of children, 5 percent of adults infected with  

 
HBV develop chronic hepatitis (WHO, 2014). T
who are unable to produce an effective immune 
response allow the virus to replicate for long periods 
in their liver causing chronic hepatitis B virus, (HBV) 
infection, cirrhosis of liver and hepatocellular 
carcinoma (HCC) (Yen, 2002). Chronic HBV 
infection is shown to be 0.8% in pregnant women 
with the risk of vertical (mother to child) transmission 
(Trehanpati et al, 2013). In neonates, HBV infection 
has a linkage with strong presence of Tregs (T 
regulatory cells) and defective CD
produce interferon (𝐼𝐹𝑁) −
decreased CD8ାT cell dysfunction is T cell receptor  
(𝑇𝐶𝑅𝜁) chain. Due to persistent intrauterine exposure 
of the viral antigens early in embryonic development 
there could be 𝑇𝐶𝑅𝜁 leading to immune tolerance
HBV antigens in the newborns positive for hepatitis B 
surface antigen (HBsAg +ve). Finally T cell tolerance 
to HBV antigen due to HBV infection may probably 
develop to chronicity in the newborn. To restore 
acquired immunity and better production of HBV
specific antibodies, vaccination may be necessary 
(Trehanpati et al, 2013). 
 
Two disease states, not necessarily static, are possible 
after seroclearance of HBeAg and they are inactive 
carrier (IC) state and chronic hepatitis B (CHB) state 
(Pita et al, 2014). The duration of clearance (reactive) 
phase last from months to years. In 
(IC) state, seroconversion of hepatitis B e antigen 
(HBeAg) to hepatitis B e antibody (HBeAb) occurs, 
HBV DNA becomes non detectable or at low level 
and ALT is usually normal, reflecting very low or no 
replication of HBV and mild or no
(European association for the study of liver (EASL), 
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HBV develop chronic hepatitis (WHO, 2014). Those 
who are unable to produce an effective immune 
response allow the virus to replicate for long periods 
in their liver causing chronic hepatitis B virus, (HBV) 
infection, cirrhosis of liver and hepatocellular 
carcinoma (HCC) (Yen, 2002). Chronic HBV 

ction is shown to be 0.8% in pregnant women 
with the risk of vertical (mother to child) transmission 
(Trehanpati et al, 2013). In neonates, HBV infection 
has a linkage with strong presence of Tregs (T 
regulatory cells) and defective CD8ାT cells pool to 

) − 𝛾. Associated with 
T cell dysfunction is T cell receptor  

chain. Due to persistent intrauterine exposure 
of the viral antigens early in embryonic development 

leading to immune tolerance to 
HBV antigens in the newborns positive for hepatitis B 
surface antigen (HBsAg +ve). Finally T cell tolerance 
to HBV antigen due to HBV infection may probably 
develop to chronicity in the newborn. To restore 
acquired immunity and better production of HBV 
specific antibodies, vaccination may be necessary 

Two disease states, not necessarily static, are possible 
after seroclearance of HBeAg and they are inactive 
carrier (IC) state and chronic hepatitis B (CHB) state 
(Pita et al, 2014). The duration of clearance (reactive) 
phase last from months to years. In the inactive carrier 
(IC) state, seroconversion of hepatitis B e antigen 
(HBeAg) to hepatitis B e antibody (HBeAb) occurs, 
HBV DNA becomes non detectable or at low level 
and ALT is usually normal, reflecting very low or no 
replication of HBV and mild or no hepatic injury 
(European association for the study of liver (EASL), 
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2012). The inactive carrier state may last for years or 
even lifetime. Patients in this state can have 
spontaneous resolution of hepatitis B and develop 
HBsAg, but a portion of them may undergo 
spontaneous or immunosuppressant – induced 
reactivation of chronic hepatitis B. This bring in the 
second state which is chronic hepatitis B and is 
usually associated with elevated ALT, high level of 
DNA, moderate to severe liver histological activity, 
and with or without HBeAg seroconversion (Pan and 
Zhang, 2005). Differentiating between inactive carrier 
(IC) and chronic hepatitis B (CHB) status is very 
important in clinical practice, because it has an 
implication in the follow-up, management and 
prognosis (EASL, 2012). 
 
The HBV virion genome is circular and 
approximately 3.2kb in size, consisting of DNA that is 
mostly double stranded. It has compact organization, 
with four overlapping reading frames running in one 
direction and no non coding regions. The minus 
strand is unit length and has a protein covalently 
attached to the 5′ end. Thus, neither DNA strand, is 
closed and circularity is maintained by cohesive ends 
(Strauss, 2002). The four overlapping open reading 
frames (ORFs) in the genome are responsible for the 
transcription and expression of seven different 
hepatitis B proteins. The translation of these proteins 
is through the use of multiple in-frame start codons. 
The HBV genome also contains parts that regulate 
transcription, determine the site of polyadenylation 
and a specific nucleocapsid. The genomic 
arrangement of the hepatitis B virus family makes it 
unique among viruses. The unusually packaged may 
indicate that the method of replication employed by 
HBV is not of conserved DNA replication (Graces, 
HBVP, 2003). 
 
Since HBV is a noncytopathic virus (Ilan, 2002), that 
is cells infected by HBV will not be killed by virus 
directly, cellular function and life span of HBV – 
infected hepatocytes are almost the same  as that of 
the uninfected cells in vitro (Kangxian, 2006). The 
death rate of noncytopathic virus infected cells in the 
absence of immunity equals that of uninfected target 
cells (Woderz, 2005). The lifespan of HBV infected 
cells varies greatly in vivo which is mainly due to the 
strength of the anti HBV CTL response (Nowak and 
Robert, 2000). CTL will not only kill but cure the 
infected hepatocytes by nonlytic effector mechanism 
(Bartolett a and Ferrari, 2003; and Guidotti, 2003). In 
a study by Yang et al (2009) it was observed that, 

induction of a 𝐶𝐷8ା T cell response depends on the 
presence of 𝐶𝐷4ା T cells. That each of these 
effectors, 𝐶𝐷4ା  and 𝐶𝐷8ା T cells, Nk cells, fas, IFN 
– gamma (IFN - 𝛾), IFN – alpha/beta receptor (IFN – 
𝛼/𝛽 - R), and IFN receptor 1 (INF R1), was required 
to eliminate the transcriptional template from the 
liver. These results are consistent with a model  in 
which 𝐶𝐷4ା T cells serve as master reguletors of the 
adaptive immune response to HBV; 𝐶𝐷8ା T cells are 
the key cellular effectors mediating HBV clearance 
from the liver, apparently by a fas – dependent 
perforin independent process in which NK cells, IFN 
– 𝛾, INF R1 and IFN – 𝛼/𝛽 – R play supportive roles 
(Yang et al, 2009).  Immediately after infection, 
innate immunity limits the spread of the pathogen and 
initiate efficient development of an adaptive immune 
response. Innate host responses during the early phase 
of viral infection are mainly characterized by the 
production of type 1 interferon (IFN) – 𝛼/𝛽 cytokines 
and the activation of natural killer (NK) cells. 
Production of type 1 IFNs can be triggered directly by 
virus replication through cellular mechanisms that 
detect the presence of viral RNA or DNA 
(Alexopoulou et al, 2001; Lund et al, 2003; Heil et al, 
2004), while NK cells are activated by the recognition 
of stress – induced molecules and /or the modulation 
of the quantity of major histocompatibility complex 
(MHC) – class 1 molecules on the surface of infected 
cells (Moretta et al, 2005). 
 
II. RELATED WORKS 
Wu and Su (2014) considered a model with 
intracellular delay and nonlinear infection rate of 
saturated functional response. By constructing 
suitable Lyapunov functions and using LaSalle 
invariance principle, the proved that the infection free 
equilibrium is globally asymptotiacally stable when 
𝑅଴ ≤ 1. And if 𝑅଴ > 1, there exists an infection 
equilibrium and they get its global asymptotic 
stability by constructing Lyapunov functional. Wang 
and Tian (2013) developed and investigated a model 
that studied the global stability for a delayed HBV 
infection with CTL immune response. They showed 
that the global dynamics is determined by the basic 
reproduction number 𝑅଴ and CTL immune response 
reproduction number 𝑅ଵ.   
 
Huang et al (2010) studied the global properties of a 
class of delay differential equations model for virus 
infection with nonlinear transmissions. Their model 
gives a more complex and general infection process, a 
general nonlinear contact rate between target cells and 
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viruses and the removal rate of infected cells are 
considered, and two constant delays are incorporated 
into their model. These incorporated delays describes 
(i) the time needed for a newly infected cells to start 
producing viruses and (ii) the time needed for a newly 
produced virus to become infectious (mature). Wang 
et al (2007) developed and analyzed the HBV 
infection in a diffusion model confined to a finit 
domain, induced by intracellular time delay between 
infection of a cell and production of a new viral 
particle. Rezounenko (2017) investigated a class of 
reaction diffusion virus dynamics model with 
intracellular state dependent delay and a nonlinear 
infection rate functional response. 
 
III. Formulation of the Model Equations 
3.1   The Existing Model  
We start our model formulation by introducing the 
model by Chinebu et al (2017) and finally incorporate 
the delay parameter to obtain the delay model. 

 
𝑑𝑥

𝑑𝑡
 = 𝜓 − 𝑎ଵ𝑥 −

𝛽𝑎ଷ𝑥𝑦

𝜇
+ 𝑏ଵ𝑦𝑧 

 
𝑑𝑦

𝑑𝑡
= 𝜁𝑦 +

𝛽𝑎ଷ𝑥𝑦

𝜇
− 𝑎ଵ𝑦 − (𝑏ଵ + 𝑏ଶ)𝑦𝑧      (3.1) 

 
𝑑𝑧 

𝑑𝑡 
= 𝛾 + 𝑎ସ𝑦𝑧 − 𝑏ସ𝑧. 

 
Equation (3.1) contains three variables, that is, 
uninfected hepatocytes (𝑥), infected hepatocytes (𝑦), 
and CTL response(𝑧). Uninfected, susceptible 
hepatocyte are assumed to be produced at a constant 
level, 𝜓, the natural death rate of both infected and 
uninfected hepatocytes are assumed to be the constant 

𝑎ଵ. 
ఉ௔య௫௬

ఓ
 is assumed to be the level at which 

uninfected hepatocytes are being infected due to 
interaction with infected hepatocytes and 𝜁𝑦 is the 
level at which infected hepatocyte proliferate. The 
elimination of virus is through the response of the 
cytotoxic T lymphocytes (CTL) which can be 
activated in two different pathways, either by killing 
the infected hepatocytes or by clearing the virus from 
within the hepatocyte without killing it. Infected 
hepatocytes are assumed to be killed by the CTL 
response at a rate 𝑏ଶ𝑦𝑧 and be cleared from within by 
the CTL response at a rate 𝑏ଵ𝑦𝑧.  𝑎ଷ𝑦 is the 
production level of free virus from infected 
hepatocytes and the free virus particles are removed at 
a rate 𝜇.Two terms, 𝛾 and 𝑎ସ𝑦𝑧 were used to describe 

CTL rapid growth and reproduction of new cells 
(proliferation), where 𝛾 represents antigen 
independent proliferation (primary immune response) 
and𝑎ସ𝑦𝑧 represents antigen dependent proliferation 
(secondary immune response). 𝛾 is small, and is the 
response to the first exposure to antigen which is 
mediated by lymphocytes, called naïve lymphocytes 
that are seeing antigen for the first time and they are 
“immunologically inexperienced”.  We also assume 
that CTL decay at constant rate 𝑏ସ (Chinebu et al, 
2017).  
 
3.2  Delay Differential Equation 
A delay differential equation is a type of differential 
equation whereby the derivative of the unknown 
function at a certain time is given in terms of the 
values of the function at previous time and is also 
known as time delay system. Notice that we did not 
incorporate any time delay in HBV proliferation in the 
model presented in equation 3.1. Between the 
infection of a cell and the viral particles emission, 
virus production may lag by an intracellular time 
delay 𝜏. The delay or lag represents incubation period, 
thereby accounting only for the time required for the 
production of new virus particles. However, Rotich 
and Lag at (2014), shows that when the drug efficacy 
is less than perfect, the intracellular delay will be of 
crucial importance because the delay depends on the 
live span of the liver cell, that is to say that the 
maximum length of time that the cell will survive 
after infection is considered. The incorporation of 
intracellular delay is assumed to give a clearer view in 
the interpretation of the analytical result and this has 
important implications on therapeutic options and 
drug development. 
 
Gourley et al (2008), developed a delay differential 
equations on HBV infection which explicitly 
incorporate a time delay in virus production. For their 
model, the existence and the component values of the 
endemic steady state are explicitly dependent on the 
time delay. They further stated that exposed cells 
begin shedding virions after 𝜏 unit of time, 
representing the time required to construct, transcribe 
and translate the viral genome. The episomal viral 
genome, construct and then release mature virions. 
There work extended the ability of models to describe 
the relevant biological process and addressed the 
implication of ignoring the intracellular delays that 
are part of the viral life cycle. However, they did not 
take into cognizance that cytotoxic T lymphocytes 
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play an important role in the immunological 
mechanism as will be seen in our later discussion. 
Consider a system that can be in either one of two 
states Q (infection of a cell) and R (viral particle 
emission). Suppose that at time𝑡 = 0, the system is in 
state Q. suppose that when event 𝑝 takes place, the 
system switches to state R. Modifying the model 
given by (3.1), we have a new model which assumes a 
delay 𝜏, from the time of infection until the production 
of new virus particles. We define a translation 
operator in order to describe the delay in 
mathematical terms. 
 
For a real – value function 𝑝 and for 𝜏 ≥ 0, we define 
the translation operator Τఛby  
(Τఛ𝑝)(𝑡) = 𝑝(𝑡 − 𝜏), 𝑤𝑖𝑡ℎ 𝑡𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦 𝑡 ≥ 0 𝑎𝑛𝑑 𝑝

∈ ℝ௡.        
 
Since the virus must have contact with the liver cells 
before they will be infected, we let 

𝑥ଵ = Τఛ𝑥,     𝑦ଵ = Τఛ𝑦,    𝑧ଵ = Τఛ𝑧 
 
for notional convenience and this gives the new 
system with delay as 

𝑑𝑥

𝑑𝑡
= 𝜓 − 𝑎ଵ𝑥 −

𝛽𝑎ଷ𝑥𝑦

𝜇
+ 𝑏ଵ𝑦𝑧 

 
𝑑𝑦

𝑑𝑡
= 𝜁𝑦 +

𝛽𝑎ଷ𝑥ଵ𝑦ଵ

𝜇
− 𝑎ଵ𝑦 − (𝑏ଵ + 𝑏ଶ)𝑦𝑧       (3.2) 

 
𝑑𝑧

𝑑𝑡
= 𝛾 + 𝑎ସ𝑦𝑧 − 𝑏ସ𝑧. 

 
ఉ௔య௫భ௬భ

ఓ
, indicates a finite time lag between infection 

of a hepatocyte and production of new virus particles 
in the equation that determine the rate of 𝑦 and this 
describes the dynamical variable 𝑦 at time 𝑡 that 
depends on the term evaluated at earlier time 𝑡 − 𝜏. 
Since there are three, possible steady state in the 
previous section and these states are too complex to 
analyze, we therefore, discuss only the linear ability 
of the most concerned state – uninfected state. System 
(3.2) is a special case of the general system: 

𝑑𝑥

𝑑𝑡
= 𝐹ଵ(𝑥, 𝑦, 𝑧, 𝑥ଵ, 𝑦ଵ, 𝑧ଵ) 

 
ௗ௬

ௗ௧
= 𝐹ଶ(𝑥, 𝑦, 𝑧, 𝑥ଵ, 𝑦ଵ, 𝑧ଵ)                  (3.3)' 

 
𝑑𝑧

𝑑𝑡
= 𝐹ଷ(𝑥, 𝑦, 𝑧, 𝑥ଵ, 𝑦ଵ, 𝑧ଵ) 

Where functions  𝐹ଵ, 𝐹ଶ 𝑎𝑛𝑑 𝐹ଷ depends on 𝑥, 𝑦, 𝑧 
and their delays. Therefore,𝐹ଵ, 𝐹ଶ 𝑎𝑛𝑑 𝐹ଷ can be 
identified as follows: 

𝐹ଵ(𝑥, 𝑦, 𝑧, 𝑥ଵ, 𝑦ଵ, 𝑧ଵ) = 𝜓 − 𝑎ଵ𝑥 −
𝛽𝑎ଷ𝑥𝑦

𝜇
+ 𝑏ଵ𝑦𝑧   

 
𝐹ଶ(𝑥, 𝑦, 𝑧, 𝑥ଵ, 𝑦ଵ, 𝑧ଵ)

= 𝜁𝑦 +
𝛽𝑎ଷ𝑥ଵ𝑦ଵ

𝜇
− 𝑎ଵ𝑦

− (𝑏ଵ + 𝑏ଶ)𝑦𝑧                (3.4)  
 

𝐹ଷ(𝑥, 𝑦, 𝑧, 𝑥ଵ, 𝑦ଵ, 𝑧ଵ) = 𝛾 + 𝑎ସ𝑦𝑧 − 𝑏ସ𝑧.               
                                                                                        

We then use define the steady state for the delay 
system having that a point (𝑥ො, 𝑦ො, 𝑧̂) is called a steady 
state of the system (3.3) if it is a constant solution of 
the equations. 

𝐹ଵ(𝑥ො, 𝑦ො, 𝑧̂, 𝑥ොଵ, 𝑦ොଵ, 𝑧̂ଵ)                                       
𝐹ଶ(𝑥ො, 𝑦ො, 𝑧̂, 𝑥ොଵ, 𝑦ොଵ, 𝑧̂ଵ)                            (3.5)  
𝐹ଷ(𝑥ො, 𝑦ො, 𝑧̂, 𝑥ොଵ, 𝑦ොଵ, 𝑧̂ଵ)                                         

 
Proposition1: If 𝑎ଵ, 𝑎ଷ, 𝑏ଵ, 𝑏ଶ, 𝑏ସ, 𝜓, 𝜁, 𝛾, 𝛽, 𝜇 > 0, 
then the steady state of system (3.2) is the same as the 
steady state of system (3.1). 
Proof: From equation (3.4), we have that  

𝐹ଵ(𝑥ො, 𝑦ො, 𝑧̂, 𝑥ොଵ, 𝑦ොଵ, 𝑧̂ଵ) = 𝑓ଵ(𝑥ො, 𝑦ො, 𝑧̂) 
𝐹ଶ(𝑥ො, 𝑦ො, 𝑧̂, 𝑥ොଵ, 𝑦ොଵ, 𝑧̂ଵ) = 𝑓ଶ(𝑥ො, 𝑦ො, 𝑧̂) 
𝐹ଷ(𝑥ො, 𝑦ො, 𝑧̂, 𝑥ොଵ, 𝑦ොଵ, 𝑧̂ଵ) = 𝑓ଷ(𝑥ො, 𝑦ො, 𝑧̂) 

 
This simply shows that the steady states of system 
(3.2) and (3.1) are the same. Considering a 
neighborhood close to the steady state solution and 
letting 

𝑥 = 𝑥ො + 𝑋,         𝑦 = 𝑦ො + 𝑌,          𝑧 = 𝑧̂ + 𝑍,    
𝑥ଵ = 𝑥ො + 𝑋ଵ, 𝑦ଵ = 𝑦ො + 𝑌ଵ, 𝑧ଵ = 𝑧̂ + 𝑍ଵ 

 
after which we expand 𝐹ଵ, 𝐹ଶ 𝑎𝑛𝑑 𝐹ଷ in the Taylor 
series about the point (𝑥ො, 𝑦ො, 𝑧̂) and retain only the 
linear terms, to obtain  
𝑑𝑋

𝑑𝑡
= ൤−𝑎ଵ −

𝛽𝑎ଷ𝑦ො

𝜇
൨ 𝑋 + ൤−

𝛽𝑎ଷ𝑥ො

𝜇
+ 𝑏ଵ𝑧̂൨ 𝑌 + [𝑏ଵ𝑦ො]𝑍 

 
𝑑𝑌

𝑑𝑡
= ൤

𝛽𝑎ଷ𝑦ො

𝜇
൨ 𝑋ଵ + ൤

𝛽𝑎ଷ𝑥ො

𝜇
൨ 𝑌ଵ

+ [𝜁 − 𝑎ଵ − (𝑏ଵ + 𝑏ଶ)𝑧̂]𝑌
− [(𝑏ଵ + 𝑏ଶ)𝑦ො]𝑍                    (3.6) 

 
𝑑𝑍

𝑑𝑡
= [𝑎ସ𝑧̂]𝑌 + [𝑎ସ𝑦ො − 𝑏ସ]𝑍       
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To linearize (3.6) we let 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡 ⎦
⎥
⎥
⎥
⎥
⎤

= ቎

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
቏ 

 
Let  

ቈ
𝑥
𝑦
𝑧

቉ = 𝐻 𝑎𝑛𝑑 ቈ
𝑥
𝑦
𝑧

቉ (𝑡) = 𝐻(𝑡)   

But, in biological population (Malthusian growth 
model), the major underlying assumption is that the 
rate of change of population is proportional to the 
population itself. 
Thus we let  

𝑑𝐻

𝑑𝑡
= 𝜆𝐻. 

 
where the parameter 𝜆 is known as the natural rate of 
increase and is a positive constant. We now solve the 
differential equation using the method of separation of 
variables to obtain 

𝑑𝐻

𝐻
= 𝜆𝑑𝑡. 

 

න
𝑑𝐻

𝐻
= න 𝜆𝑑𝑡  

 
ln 𝐻 = 𝜆𝑡 + 𝑐 

 
 
 

We take exponential of both sides to get 
𝑒୪୬ ு = 𝑒ఒ௧ା௖  

⟹ 𝐻(𝑡) = 𝑒ఒ௧ . 𝑒௖ 
 
If we let 𝑒௖ = 𝐻଴ we have 

𝐻(𝑡) = 𝐻଴𝑒ఒ௧ . 
 
This predicts exponential population growth as 𝑡 
increases. However, due to the time lag between the 
infection of a hepatocyte and viral particle emission 
from the hepatocyte, it may be more realistic to 
assume that the instantaneous rate of change of 
population growth is actually dependent upon the 
population at some fixed amount of time 𝜏 in the past 
(Cain and Raynolds, 2006). Observe that the rate of 
change of H at time 𝑡 is affected by the value of H at 
time 𝑡 − 𝜏. Therefore we have 

𝐻(𝑡) = 𝐻଴𝑒ఒ(௧ିఛ) 
⟹ 𝐻(𝑡) = 𝐻଴𝑒ఒ௧ . 𝑒ିఒఛ 

At 𝑡 = 0 which is assumed to be the time of infection 
of a hepatocyte, we have 

𝐻(𝑡) = 𝐻଴𝑒ିఒఛ 
 

⟹ ቎

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
቏ = 𝐻଴𝑒ିఒ௧ 

where 𝐻଴ is a constant vector (Mac Donald, 1970) and 
we have 

൥

𝑥ଵ

𝑦ଵ

𝑧ଵ

൩ = 𝑒ିఒ௧ ቈ
𝑥
𝑦
𝑧

቉ 

 

 
which transforms system (4.22) into a linear system as stated below 

⎣
⎢
⎢
⎢
⎢
⎡
𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡 ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡− ൬𝑎ଵ +

𝛽𝑎ଷ𝑦ො

𝜇
൰ − ൬

𝛽𝑎ଷ𝑥ො

𝜇
− 𝑏ଵ𝑧̂൰ 𝑏ଵ𝑦ො

𝛽𝑎ଷ𝑦ො𝑒ିఒ௧

𝜇
𝜁 +

𝛽𝑎ଷ𝑥ො𝑒ିఒ௧

𝜇
− 𝑎ଵ − (𝑏ଵ + 𝑏ଶ)𝑧̂ −(𝑏ଵ + 𝑏ଶ)𝑦ො

0 𝑎ସ𝑧̂ 𝑎ସ𝑦ො − 𝑏ସ ⎦
⎥
⎥
⎥
⎥
⎤

൥
𝑋
𝑌
𝑍

൩. 

 
Then, we arrive at the matrix 

𝐻 =

⎣
⎢
⎢
⎢
⎢
⎡− ൬𝑎ଵ +

𝛽𝑎ଷ𝑦ො

𝜇
൰ − ൬

𝛽𝑎ଷ𝑥ො

𝜇
− 𝑏ଵ𝑧̂൰ 𝑏ଵ𝑦ො

𝛽𝑎ଷ𝑦ො𝑒ିఒ௧

𝜇
𝜁 +

𝛽𝑎ଷ𝑥ො𝑒ିఒ௧

𝜇
− 𝑎ଵ − (𝑏ଵ + 𝑏ଶ)𝑧̂ −(𝑏ଵ + 𝑏ଶ)𝑦ො

0 𝑎ସ𝑧̂ 𝑎ସ𝑦ො − 𝑏ସ ⎦
⎥
⎥
⎥
⎥
⎤

      (3.7)       

Equation (3.7) is the coefficient matrix of the linear system having 𝜆 as the eigenvalue of the matrix 𝐻. At this 
point, we investigate the stability of the delay system in terms of the eigenvalues of the matrix 𝐻. 
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Delay differential system requires information on the entire interval 
𝑡଴, we need 𝑥(𝑡଴), 𝑦(𝑡଴), 𝑧(𝑡଴), 𝑥(𝑡଴ −
known that the solution to 𝑠ᇱ(𝑡) = 𝑠(𝑡)
equation 𝑠ᇱ(𝑡) = 𝑠(𝑡 − 𝜏)ଶ, however, are continuable for all time if 
states that if (𝑥∗, 𝑦∗, 𝑧∗) is the steady state solution of system (3.3), we say that 
𝜀 > 0 there is a 𝛿 > 0 such that, for every solution 
 

[𝑥(𝑡଴) − 𝑥∗]ଶ + [𝑦(𝑡଴) − 𝑦
 
For some 𝑡଴𝜖[𝑡ଵ − 𝜏, 𝑡ଵ], then 
 

[𝑥(𝑡଴) − 𝑥∗]ଶ +
 
If, (𝑥∗, 𝑦∗, 𝑧∗) is not stable, we say that it is unstable. If 
implies that ൫𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)൯ → (𝑥∗, 𝑦∗

Halanay (1966), we remark that the steady state  
We compute the characteristic equation by seeking for exponential solution of the delay differential system to 
arrive at a transcendental equation of the form

 
Where 𝜏 is the length of discrete delay added,
 
Proposition2: Suppose 

𝑎

1. If 𝑎ଵ +
(௕భା௕మ)ఊ

௕ర
> 𝜁 +

ఉ௔యట

௔భఓ
, then the steady state 

stable for 𝜏 ≥ 0. 

2. If 𝑎ଵ +
(௕భା௕మ)ఊ

௕ర
< 𝜁 +

ఉ௔యట

௔భఓ
 then the steady state 

Proof: 
At steady state, the characteristic equation of the delay differential equat
𝑈ଶ(𝜆) = 𝜆ଷ + ൫𝑑ଵ + 𝑘ଵ𝑒ିఒఛ൯𝜆ଶ + ൫𝑑ଶ +
 
which can be written as 

 𝑈ଶ(𝜆, 𝜏) ≡ 𝜆ଷ + 𝑑ଵ𝜆ଶ +
 

ተ

ተ
− ൬𝑎ଵ +

𝛽𝑎ଷ𝑦ො

𝜇
൰ − 𝜆

𝛽𝑎ଷ𝑦ො𝑒ିఒ௧

𝜇
𝜁 +

0
 
Since the steady state about which we have linearized is stable in the absence of delay (Chinebu et al, 2017), 
that is when 𝜏 = 0,which simply implies that there is no delay and that all th
positive real parts, therefore, proposition 2 is proved as in (Chinebu et al 2017). We further consider the 
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Delay differential system requires information on the entire interval [𝑡଴ − 𝜏, 𝑡଴]. To know the rate of change at 
( − 𝜏), 𝑦(𝑡଴ − 𝜏) 𝑎𝑛𝑑 𝑧(𝑡଴ − 𝜏). According to Burton (1985), it is well 

( )ଶ diverge to infinity in finite time. Solutions to the delay differential 
, however, are continuable for all time if 𝜏  is positive for 

is the steady state solution of system (3.3), we say that (𝑥∗, 𝑦∗,
such that, for every solution (𝑥, 𝑦, 𝑧), if 

) 𝑦∗]ଶ + [𝑧(𝑡଴) − 𝑧∗]ଶ < 𝛿ଶ                                       

] + [𝑦(𝑡଴) − 𝑦∗]ଶ + [𝑧(𝑡଴) − 𝑧∗]ଶ < 𝜀ଶ  ∀   𝑡 > 𝑡ଵ

is not stable, we say that it is unstable. If (𝑥∗, 𝑦∗, 𝑧∗) is stable and if 𝛿 can be cho
∗, 𝑧∗) 𝑎𝑠 𝑡 → ∞, we say that (𝑥∗, 𝑦∗, 𝑧∗) is asymptotically stable. From 

Halanay (1966), we remark that the steady state  (𝑥ො, 𝑦ො, 𝑧̂) is stable if no eigenvalue of H has positive real part. 
We compute the characteristic equation by seeking for exponential solution of the delay differential system to 
arrive at a transcendental equation of the form 

𝑑௝(𝜆) + 𝑘௝(𝜆)𝑒ିఒఛ = 0, 

length of discrete delay added,𝑑 𝑎𝑛𝑑 𝑘 are polynomial in 𝜆 𝑎𝑛𝑑 𝑗 = 1,2,

𝑎ଵ, 𝑎ଷ, 𝑏ଵ, 𝑏ଶ, 𝑏ସ, 𝛾, 𝜁, 𝛽, 𝜇, 𝜓 > 0 
 

, then the steady state ൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱ of the system (18) is asymptomatically 

then the steady state ൭𝜓
𝑎ଵ

ൗ , 0,
𝛾

𝑏ସ
ൗ ൱ of the system (3.2) is unstable for 

At steady state, the characteristic equation of the delay differential equation will have the form
൫ + 𝑘ଶ𝑒ିఒఛ൯𝜆 + ൫𝑑ଷ + 𝑘ଷ𝑒ିఒఛ൯ = 0      (3.9) 

+ 𝑑ଶ𝜆 + 𝑑ଷ + (𝑘ଵ𝜆ଶ + 𝑘ଶ𝜆 + 𝑘ଷ)𝑒ିఛ = 0          

ො
− ൬

𝛽𝑎ଷ𝑥ො

𝜇
− 𝑏ଵ𝑧̂൰ 𝑏ଵ𝑦ො

+
𝛽𝑎ଷ𝑥ො𝑒ିఒ௧

𝜇
− 𝑎ଵ − (𝑏ଵ + 𝑏ଶ)𝑧̂ − 𝜆 −(𝑏ଵ + 𝑏

𝑎ସ𝑧̂ 𝑎ସ𝑦ො − 𝑏ସ

Since the steady state about which we have linearized is stable in the absence of delay (Chinebu et al, 2017), 
which simply implies that there is no delay and that all the roots of the polynomial have non 

positive real parts, therefore, proposition 2 is proved as in (Chinebu et al 2017). We further consider the 
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. To know the rate of change at 
. According to Burton (1985), it is well 

diverge to infinity in finite time. Solutions to the delay differential 
ositive for 𝑡. Also,Halanay (1966), 

𝑧∗) is stable if for every 

           (3.8) 

. 

can be chosen so that (3.8) 
is asymptotically stable. From 

is stable if no eigenvalue of H has positive real part. 
We compute the characteristic equation by seeking for exponential solution of the delay differential system to 

,3. 

of the system (18) is asymptomatically 

of the system (3.2) is unstable for 𝜏 ≥ 0. 

ion will have the form 

    (3.10) 

ො

𝑏ଶ)𝑦ො

ො − 𝜆

ተ

ተ
= 0. 

Since the steady state about which we have linearized is stable in the absence of delay (Chinebu et al, 2017), 
e roots of the polynomial have non 

positive real parts, therefore, proposition 2 is proved as in (Chinebu et al 2017). We further consider the 
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situation where 𝜏 > 0 and therefore substitute the steady state ൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱ into system (3.7), after which 

we obtain the characteristic equation as; 

ተ

ተ
−𝑎ଵ − 𝜆 −

𝛽𝑎ଷ𝜓

𝑎ଵ𝜇
+

𝑏ଵ𝛾

𝑏ସ
0

0 𝜁 +
𝛽𝑎ଷ𝜓𝑒ିఒ௧

𝑎ଵ𝜇
− 𝑎ଵ − (𝑏ଵ + 𝑏ଶ)

𝛾

𝑏ସ
− 𝜆 0

0
𝑎ସ𝛾

𝑏ସ
−𝑏ସ − 𝜆

ተ

ተ

= 0 

 

(𝜆 + 𝑎ଵ) ቆ𝜆 + 𝑎ଵ +
(𝑏ଵ + 𝑏ଶ)𝛾

𝑏ସ
− 𝜁 −

𝛽𝑎ଷ𝜓𝑒ିఛ

𝑎ଵ𝜇
ቇ (𝜆 + 𝑏ସ) = 0. 

 

Therefore, matrix 𝐻 has three eigenvalues, at steady state ൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱and they are 𝜆ଵ = −𝑎ଵ < 0, 𝜆ଶ =

−𝑏ସ < 0, 𝑎𝑛𝑑 𝜆ଷ satisfying the equation 

𝜆ଷ + 𝑎ଵ +
(𝑏ଵ + 𝑏ଶ)𝛾

𝑏ସ
− 𝜁 −

𝛽𝑎ଷ𝜓𝑒ିఛఒ

𝑎ଵ𝜇
< 0. 

 
At this point, we introduce a function 𝑣(𝑡) to enable us solve for the position of 𝜆ଷ 

𝑣(𝑡) = 𝑡 + 𝑎ଵ +
(𝑏ଵ + 𝑏ଶ)𝛾

𝑏ସ
− 𝜁 −

𝛽𝑎ଷ𝜓𝑒ିఛ௧

𝑎ଵ𝜇
,   𝑡 ∈ ℝ 

 
and this enable us to find the location of the eigenvalue 𝜆ଷ. By differentiating 𝑣(𝑡) with respect to 𝑡, yields 

𝑣′(𝑡) = 1 +
𝛽𝑎ଷ𝜓𝜏𝑒ିఛ௧

𝑎ଵ𝜇
, 

 
which is always positive, we also observe that 

lim
௧⟶ିஶ

𝑣(𝑡) = −∞,              lim
௧⟶ஶ

 𝑣(𝑡) = ∞. 

 
This simply shows that the function 𝑣 has a unique zero. That is  

𝑣(0) = 𝑎ଵ +
(𝑏ଵ + 𝑏ଶ)𝛾

𝑏ସ
− 𝜁 −

𝛽𝑎ଷ𝜓

𝑎ଵ𝜇
. 

 

From here, we observe that if  𝑎ଵ +
(௕భା௕మ)ఊ

௕ర
> 𝜁 +

ఉ௔యట

௔భఓ
, we conclude that 𝑣(0) > 0 and thus, 𝜆ଷ < 0 and this 

implies that the steady state ൭𝜓
𝑎ଵ

ൗ , 0,
𝛾

𝑏ସ
ൗ ൱ is asymptotically stable for all 𝜏 > 0. If 𝑎ଵ +

(௕భା௕మ)ఊ

௕ర
< 𝜁 +

ఉ௔యట

௔భఓ
, 

we then conclude that 𝑣(0) < 0 and therefore 𝜆ଷ > 0 which shows that the steady state ൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱ is 

unstable for all 𝜏 > 0. 
 
Notice that these roots changes as 𝜏 varies. Now, we determine whether there exists a critical delay 𝜏௖ > 0 
interms of 𝑑ଵ, 𝑑ଶ, 𝑑ଷ, 𝑘ଵ, 𝑘ଶ, 𝑘ଷ so that 𝑅𝑒(𝜆) > 0 for 𝜏 > 𝜏௖ . This critical value of 𝜏 is the point at which (3.10) 
transform from having a non positive to a non negative real parts. In other words, 𝜏௖ is the value of 𝜏 such that 
𝑅𝑒(𝜆) = 0, at which the transition from stability to instability occurs.  By determining the conditions on the 
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parameters to ensure that the steady state ൭𝜓
𝑎ଵ

ൗ , 0,
𝛾

𝑏ସ
ൗ ൱ of the delay system (3.2) is still stable, we consider 

equation (3.10) as a complex variable mapping problem. 
 

For this to occur considering the steady state ൭𝜓
𝑎ଵ

ൗ , 0,
𝛾

𝑏ସ
ൗ ൱, there must be a boundary case, a critical value of 

𝜏 such that the characteristic has a purely imaginary root. To determine whether or not such a 𝜏 exists, we 
reduce (3.10) to a polynomial problem and then seek for particular types of roots, thereby determining if a 
bifurcation can occur at such delay. We begin by looking for purely imaginary roots, and letting 𝜆(𝜏) = 𝜙(𝜏) +
𝑖𝜎(𝜏), 𝑤ℎ𝑒𝑟𝑒 𝜙 𝑎𝑚𝑑 𝜎 are real, we have 𝜙(0) < 0. By continuity of 𝜙, 𝜙(𝜏) < 0 for values of 𝜏 such that0 ≤
𝜏 ≤ 𝜏௖for some 𝜏௖ > 0. Therefore, the steady state remains stable for values of 𝜏.  Substituting 𝜆(𝜏) into 
equation (3.10) i.e.,  
 

𝜆ଷ + 𝑑ଵ𝜆ଶ + 𝑑ଶ𝜆 + 𝑑ଷ + (𝑘ଵ𝜆ଶ + 𝑘ଶ𝜆 + 𝑘ଷ)𝑒ିఛఒ = 0 
 
we obtain 

(𝜙 + 𝑖𝜎)ଷ + 𝑑ଵ(𝜙 + 𝑖𝜎)ଶ + 𝑑ଶ(𝜙 + 𝑖𝜎) + 𝑑ଷ 
+(𝑘ଵ(𝜙 + 𝑖𝜎)ଶ + 𝑘ଶ(𝜙 + 𝑖𝜎) + 𝑘ଷ)𝑒ିఛ(థା௜ఙ) = 0 

 
𝜙ଷ + 3𝜙ଶ𝑖𝜎 − 3𝜙𝜎ଶ − 𝑖𝜎ଷ + 𝑑ଵ(𝜙ଶ + 2𝜙𝑖𝜎 − 𝜎ଶ) + 𝑑ଶ(𝜙 + 𝑖𝜎) + 𝑑ଷ 

+[𝑘ଵ(𝜙ଶ + 2𝜙𝑖𝜎 − 𝜎ଶ) + 𝑘ଶ(𝜙 + 𝑖𝜎) + 𝑘ଷ]𝑒ିఛ(థା௜ఙ) = 0 
 

𝜙ଷ + 3𝜙ଶ𝑖𝜎 − 3𝜙𝜎ଶ − 𝑖𝜎ଷ + 𝑑ଵ𝜙ଶ + 2𝑑ଵ𝜙𝑖𝜎 − 𝑑ଵ𝜎ଶ +  𝑑ଶ𝜙 + 𝑑ଶ𝑖𝜎 + 𝑑ଷ 
+[𝑘ଵ𝜙ଶ + 2𝑘ଵ𝜙𝑖𝜎 − 𝑘ଵ𝜎ଶ + 𝑘ଶ𝜙 + 𝑘ଶ𝑖𝜎 + 𝑘ଷ]𝑒ିఛ(థା௜ఙ) = 0. 

 
We probably write the exponential in terms of trigonometric function, that is 

𝑒ିఛ(థା௜ఙ) = 𝑒ିఛథ . 𝑒ିఛ௜ఙ,                     
𝐵𝑢𝑡                              𝑒ିఛ௜ = cos 𝜏𝜎 − 𝑖𝑠𝑖𝑛 𝜏𝜎,                                                            

⟹ 𝑒ିఛథ . 𝑒ିఛ௜ఙ = 𝑒ିఛథ(cos 𝜏𝜎 − 𝑖𝑠𝑖𝑛 𝜏𝜎). 
 
Then we break the polynomial up into its real and imaginary parts, and write the exponential in terms of the 
trigonometric functions to get  

𝑑ଷ + 𝑑ଶ𝜙 + 𝑑ଵ𝜙ଶ + 𝜙ଷ − 𝑑ଵ𝜎ଶ − 3𝜙𝜎ଶ + 𝑖(𝑑ଶ𝜎 + 2𝑑ଵ𝜙𝜎 + 3𝜙ଶ𝜎 − 𝜎ଷ) 
+𝑒ିఛథ(cos 𝜏𝜎 − 𝑖𝑠𝑖𝑛 𝜏𝜎)[𝑘ଵ𝜙ଶ + 2𝑘ଵ𝜙𝑖𝜎 − 𝑘ଵ𝜎ଶ + 𝑘ଶ𝜙 + 𝑘ଶ𝑖𝜎 + 𝑘ଷ] = 0 

𝑑ଷ + 𝑑ଶ𝜙 + 𝑑ଵ𝜙ଶ + 𝜙ଷ − 𝑑ଵ𝜎ଶ − 3𝜙𝜎ଶ + 𝑖(𝑑ଶ𝜎 + 2𝑑ଵ𝜎 + 3𝜙ଶ𝜎 − 𝜎ଷ) 
+𝑒ିఛథ[cos 𝜏𝜎 (𝑘ଵ𝜙ଶ + 2𝑘ଵ𝜙𝑖𝜎 − 𝑘ଵ𝜎ଶ + 𝑘ଶ𝜙 + 𝑘ଶ𝑖𝜎 + 𝑘ଷ)] 

−𝑒ିఛథ[𝑖𝑠𝑖𝑛 𝜏𝜎(𝑘ଵ𝜙ଶ + 2𝑘ଵ𝜙𝑖𝜎 − 𝑘ଵ𝜎ଶ + 𝑘ଶ𝜙 + 𝑘ଶ𝑖𝜎 + 𝑘ଷ)] = 0 
 
 

𝑑ଷ + 𝑑ଶ𝜙 + 𝑑ଵ𝜙ଶ + 𝜙ଷ − 𝑑ଵ𝜎ଶ − 3𝜙𝜎ଶ + 𝑖(𝑑ଶ𝜎 + 2𝑑ଵ𝜙𝜎 + 3𝜙ଶ𝜎 − 𝜎ଷ) 
+𝑒ିఛథ[(𝑘ଷ + 𝑘ଶ𝜙 + 𝑘ଵ𝜙ଶ − 𝑘ଵ𝜎ଶ) cos 𝜏𝜎 + 𝑖(𝑘ଶ𝜎 + 2𝑘ଵ𝜎) cos 𝜏𝜎] 

+𝑒ିఛథ[(−𝑘ଵ𝜎ଶ + 𝑘ଷ + 𝑘ଶ𝜙 + 𝜙)(−𝑖𝑠𝑖𝑛 𝜏𝜎) + 𝑖(𝑘ଶ𝜎 + 2𝑘ଵ𝜙𝜎)(−𝑖𝑠𝑖𝑛 𝜏𝜎)] = 0 
 

𝑑ଷ + 𝑑ଶ𝜙 + 𝑑ଵ𝜙ଶ + 𝜙ଷ − 𝑑ଵ𝜎ଶ − 3𝜙𝜎ଶ + 𝑖(𝑑ଶ𝜎 + 2𝑑ଵ𝜙𝜎 + 3𝜙ଶ𝜎 − 𝜎ଷ) 
+𝑒ିఛథ[(𝑘ଶ𝜎 + 2𝑘ଵ𝜙𝜎)𝑠𝑖𝑛 𝜏𝜎 + (𝑘ଷ + 𝑘ଶ𝜙 + 𝑘ଵ𝜙ଶ − 𝑘ଵ𝜎ଶ) cos 𝜏𝜎] 

+𝑖𝑒ିఛథ[(𝑘ଵ𝜎ଶ − 𝑘ଷ − 𝑘ଶ𝜙 − 𝑘ଵ𝜙ଶ)𝑠𝑖𝑛 𝜏𝜎 + (𝑘ଶ𝜎 + 2𝑘ଵ𝜙𝜎) cos 𝜏𝜎] = 0.    (3.11) 
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Assuming, we let 𝜙(𝜏௖) = 0 for some 𝜏௖ > 0 and 𝜙(𝜏) < 0 𝑓𝑜𝑟 0 ≤ 𝜏 ≤ 𝜏௖ , then the steady state 

൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱ may loss stability at 𝜏 = 𝜏௖ 𝑜𝑟 𝜆(𝜏௖) = 𝑖𝜎(𝜏௖). In fact 𝑖𝜎 is a root of equation (4.26) if and 

only if we take terms of 𝜎 only and the constants. 
 

−𝑖𝜎ଷ − 𝑑ଵ𝜎ଶ + 𝑑ଶ𝑖𝜎 + 𝑑ଷ + (−𝑘ଵ𝜎ଶ + 𝑘ଶ𝑖𝜎 + 𝑘ଷ)(cos 𝜏𝜎 − 𝑖𝑠𝑖𝑛 𝜏𝜎) = 0                (3.12) 
 
In order for (3.12) to hold, both the real and imaginary parts must be zero. By equating real parts and imaginary 
parts of the right side of system (3.12) to zero, we have the equations; 

𝑘ଶ𝜎𝑠𝑖𝑛 𝜏𝜎 + (𝑘ଷ − 𝑘ଵ𝜎ଶ) cos 𝜏𝜎 − 𝑑ଵ𝜎ଶ + 𝑑ଷ = 0 
𝑘ଶ𝑖𝜎 cos 𝜏𝜎 − (𝑘ଷ − 𝑘ଵ𝜎ଶ)𝑖𝑠𝑖𝑛 𝜏𝜎 − 𝑖𝜎ଷ + 𝑑ଶ𝑖𝜎 = 0 

 
which gives; 

𝑘ଶ𝜎𝑠𝑖𝑛 𝜏𝜎 + (𝑘ଷ − 𝑘ଵ𝜎ଶ) cos 𝜏𝜎 = 𝑑ଵ𝜎ଶ − 𝑑ଷ                                                (3.13) 
𝑘ଶ𝑖𝜎 cos 𝜏𝜎 − (𝑘ଷ − 𝑘ଵ𝜎ଶ)𝑖𝑠𝑖𝑛 𝜏𝜎 = 𝑖𝜎ଷ − 𝑑ଶ𝑖𝜎                                            (3.14) 

 
Squaring both sides of (4.29) and (4.30) one obtains; 

(𝑘ଶ𝜎𝑠𝑖𝑛 𝜏𝜎)ଶ + (𝑘ଷ − 𝑘ଵ𝜎ଶ)ଶ(cos 𝜏𝜎)ଶ = (𝑑ଵ𝜎ଶ − 𝑑ଷ)ଶ                              
⟹ 𝑘ଶ

ଶ𝜎ଶ𝑠𝑖𝑛ଶ𝜏𝜎 + (𝑘ଷ
ଶ − 2𝑘ଵ𝑘ଷ𝜎ଶ + 𝑘ଵ

ଶ𝜎ସ)𝑐𝑜𝑠ଶ𝜏𝜎 =  𝑑ଵ
ଶ𝜎ସ − 2𝑑ଵ𝑑ଷ𝜎ଶ + 𝑑ଷ

ଶ           (3.15) 
 

(𝑘ଶ𝜎𝑐𝑜𝑠 𝜏𝜎)ଶ + (𝑘ଷ − 𝑘ଵ𝜎ଶ)ଶ(−sin 𝜏𝜎)ଶ = (𝜎ଷ − 𝑑ଶ𝜎)ଶ 
⟹ 𝑘ଶ

ଶ𝜎ଶ𝑐𝑜𝑠ଶ𝜏𝜎 + (𝑘ଷ
ଶ − 2𝑘ଵ𝑘ଷ𝜎ଶ + 𝑘ଵ

ଶ𝜎ସ)𝑠𝑖𝑛ଶ𝜏𝜎 =  𝜎଺ − 2𝑑ଶ𝜎ସ + 𝑑ଶ
ଶ𝜎ଶ         (3.16) 

 
Adding up the squares of (3.15) and (3.16) we have 

𝑘ଶ
ଶ𝜎ଶ(𝑠𝑖𝑛ଶ𝜏𝜎 + 𝑐𝑜𝑠ଶ𝜏𝜎) + [(𝑘ଷ

ଶ − 2𝑘ଵ𝑘ଷ𝜎ଶ + 𝑘ଵ
ଶ𝜎ସ)(𝑠𝑖𝑛ଶ𝜏𝜎 + 𝑐𝑜𝑠ଶ𝜏𝜎)] 

= 𝑑ଵ
ଶ𝜎ସ − 2𝑑ଵ𝑑ଷ𝜎ଶ + 𝑑ଷ

ଶ + 𝜎଺ − 2𝑑ଶ𝜎ସ + 𝑑ଶ
ଶ𝜎ଶ 

 
But 𝑠𝑖𝑛ଶ𝜏𝜎 + 𝑐𝑜𝑠ଶ𝜏𝜎 = 1, 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒; 

𝑘ଶ
ଶ𝜎ଶ + 𝑘ଷ

ଶ − 2𝑘ଵ𝑘ଷ𝜎ଶ + 𝑘ଵ
ଶ𝜎ସ = 𝑑ଵ

ଶ𝜎ସ − 2𝑑ଵ𝑑ଷ𝜎ଶ + 𝑑ଷ
ଶ + 𝜎଺ − 2𝑑ଶ𝜎ସ + 𝑑ଶ

ଶ𝜎ଶ 
⟹ 𝑈(𝜎) = 𝜎଺ + (𝑑ଵ

ଶ − 2𝑑ଶ − 𝑘ଵ
ଶ)𝜎ସ + (𝑑ଶ

ଶ − 2𝑑ଵ𝑑ଷ + 2𝑘ଵ𝑘ଷ − 𝑘ଶ
ଶ)𝜎ଶ + 𝑑ଷ

ଶ − 𝑘ଷ
ଶ = 0   (3.17) 

 
After squaring (3.13) and (3.14) and then summed (3.15) and (3.16), we observe two things. The first 
observation is that the trigonometric term disappears from the polynomial and the delay, 𝜏, has been eliminated. 
The second observation tells us that the equation is an even polynomial. This is because when an even or odd 

function is squared, it will always result to an even polynomial, that is 𝑠(−𝜎)ଶ = ൫±𝑠(𝜎)൯
ଶ

= 𝑠(𝜎)ଶ 
For further simplification of (4.33), we define a new variables by letting ; 
 

(𝑔 ≡ 𝜎ଶ, ℎ ≡ 𝑑ଵ
ଶ − 2𝑑ଶ − 𝑘ଵ

ଶ,      𝑙 ≡ 𝑑ଶ
ଶ − 2𝑑ଵ𝑑ଷ + 2𝑘ଵ𝑘ଷ − 𝑘ଶ

ଶ, 𝑚ଵ ≡ 𝑑ଷ
ଶ − 𝑘ଷ

ଶ) ∈ ℝ 
Then we have equation (4.33) written as 

𝑁(𝑔) = 𝑔ଷ + ℎ𝑔ଶ + 𝑙𝑔 + 𝑚ଵ = 0                                                                         (3.18) 
 
where 𝑁 is a polynomial. Remember that we are interested in 𝜎 ∈ ℝ, therefore, if all the real part of 𝑁 are non 
positive, it simply implies that there can be no simultaneous solution of (3.13) and (3.14). Alternatively, if there 
is a non negative real root 𝑔 to 𝑁, there is a delay 𝜏 corresponding to 𝜎 which solves equations (3.13) and 
(314). 
 
Lemma 3: 
Assume that equation (3.18) has negative real roots, then all roots of equation (3.10) have negative real parts if 
𝜏 > 0. 
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Proof: 
As far as equation (3.18) has negative real roots, any real number 𝜎 is not a root of equation (3.17). This 
ensures that any real number 𝜎 is not a root of equation (3.12). Hence for any real number 𝜎, the value 𝑖𝜎 is not 
a root of equation (3.10) and this implies that there is no 𝜏௖such that 𝜆(𝜏௖) = 𝑖𝜎(𝜏௖) is a root of equation (3.11). 
Because of proposition 2, for a root of (3.10) corresponding to 𝜏 = 0, 𝑅𝑒൫𝜆(0)൯ < 0. Since 𝑅𝑒൫𝜆(𝜏)൯ is a 
continuous function of 𝜏, we conclude that all roots of (3.10) have negative real parts. Since (3.18) is odd (of 
degree three), we are guaranteed a negative real root. The only way to have a simple positive real root in this 
case is to have two positive real roots. 
To present the conditions that ensure equation (3.18) has a positive real root or has no positive real roots, we 
take the Sturm chain of the polynomial (3.18) denoted by 

𝑁଴(𝑔) = 𝑁(𝑔); 
𝑁ଵ(𝑔) = 𝑁ᇱ(𝑔). 

 
Therefore, 𝑁଴(𝑔) = 𝑁(𝑔) = 𝑔ଷ + ℎ𝑔ଶ + 𝑙𝑔 + 𝑚ଵ = 0                                            (3.18) 

𝑁ଵ(𝑔) = 𝑁′ (𝑔) = 3𝑔ଶ + 2ℎ𝑔 + 𝑙 = 0                                                   (3.19) 
 
The roots of (3.19) are 

𝑔ଵ =
−ℎ + √ℎଶ − 3𝑙

3
, 𝑔ଶ =

−ℎ − √ℎଶ − 3𝑙

3
. 

One of these is positive if ℎ < 0 𝑜𝑟 ℎ > 0 𝑎𝑛𝑑 𝑙 < 0, so either ℎ 𝑜𝑟 𝑙 must be negative. So we have; 
 
Lemma 4: 
A steady state with characteristic equation (3.18) is stable in the absence of delay and becomes unstable with 
increasing delay if and only if ℎ, 𝑙 𝑎𝑛𝑑 𝑚 are not all positive and 
1. 𝑑ଵ + 𝑘ଵ > 0, 𝑑ଷ + 𝑘ଷ > 0, (𝑑ଵ + 𝑘ଵ)(𝑑ଶ + 𝑘ଶ) − (𝑑ଷ + 𝑘ଷ) > 0 
2. Suppose that either (a) 𝑚 < 0, 𝑜𝑟 (b) 𝑚 ≥ 0, ℎଶ − 3𝑙 > 0, ℎ < 0 𝑎𝑛𝑑 𝑁(𝑔ଵ) < 0 then equation (3.18) has 

positive real roots. 
3. Suppose 𝑚 ≥ 0 𝑎𝑛𝑑 ℎଶ − 3𝑙 > 0, then equation (3.18) has no positive real roots. 
4.  
Proof: 
1. 𝑑ଵ = 2𝑎ଵ + 𝑏ସ + (𝑏ଵ + 𝑏ଶ)

ఊ

௕ర
, 

𝑘ଵ = −𝜁 −
ఉ௔యట

௔భఓ
,   

𝑑ଶ = ቀ𝑎ଵ + (𝑏ଵ + 𝑏ଶ)
ఊ

௕ర
ቁ (𝑎ଵ + 𝑏ସ) + 𝑎ଵ𝑏ସ,  

𝑘ଶ = − ቀ𝜁 +
ఉ௔యట

௔భఓ
ቁ (𝑎ଵ + 𝑏ସ),  

𝑑ଷ = 𝑎ଵ𝑏ସ ቀ𝑎ଵ + (𝑏ଵ + 𝑏ଶ)
ఊ

௕ర
ቁ,  

𝑘ଷ =  −𝑎ଵ𝑏ସ ቀ𝜁 +
ఉ௔యట

௔భఓ
ቁ. 

Suppose that the Routh-Hurwitz criterion holds. That is if 𝑑ଵ + 𝑘ଵ > 0, 𝑑ଷ + 𝑘ଷ > 0   and (𝑑ଵ + 𝑘ଵ)(𝑑ଶ +
𝑘ଶ) − (𝑑ଷ + 𝑘ଷ) > 0, then the characteristic equation (3.18) is stable in the absence of delay.  
(i) If (a) is true, that is if 𝑚 < 0, then from equation (3.18) we have that 𝑁(0) = 𝑚 < 0.  Also, we observe 
that  

lim
௚→ஶ

𝑁(𝑔) = ∞, 

 
and this implies that the intermediate value theorem, guarantees that equation (3.18) must have a positive real 
root 𝑡଴, with 𝑁(𝑡଴) = 0. 
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2. Now, suppose that (b) is true, that is if  𝑚 ≥ 0 𝑎𝑛𝑑 ℎଶ − 3𝑙 < 0𝑎𝑛𝑑 ℎ > 0, we find that 𝑔ଵ is real and 
𝑔ଵ > 0. Since 𝑁(0) = 𝑚 ≥ 0 and 𝑁(𝑔ଵ) < 0, also by the intermediate value theorem, 𝑁 has a zero 
between the origin and 𝑔ଵ. 
 

Notice that 𝑁ᇱ(𝑔) = 0 has no real root since both zeros 𝑔ଵ 𝑎𝑛𝑑 𝑔ଶ 𝑜𝑓 𝑁′ are not real if 3𝑙 > ℎଶ.  
Therefore,  

𝑁ᇱ(0) = 𝑙 >
ℎଶ

3
≥ 0  

 
In conclusion, we have that the coefficients; ℎ, 𝑙 𝑎𝑛𝑑 𝑚 of the quadratic polynomial  𝑁′ are all positive real 
numbers and it simply means that 𝑁 is increasing on the real numbers. Actually, because 𝑁(0) = 𝑚 ≥ 0, we 
observe that when 𝑚 > 0, 𝑁(𝑔) does not vanish and thus, equation (3.18) does not have any positive real root. 
Also, lemma 4(ii) simply tells us that there is 𝜎 such that 𝜎 is a solution of the characteristic equation (3.10), 
thus indicating that real parts of all the eigenvalues of H are non positive for all delay 𝜏 ≥ 0.  The summary of 
the above analysis is represented in the theorems below. 
 
Theorem 5:  

The uninfected steady state ൭𝜓
𝑎ଵ

ൗ , 0,
𝛾

𝑏ସ
ൗ ൱ of the delay system (3.2) is asymptotically stable for all 𝜏 ≥ 0 if 

𝜁 +
ఉ௔యట

௔భఓ
< 𝑎ଵ +

(௕భା௕మ)ఊ

௕ర
, 𝑎ଵ, 𝑎ଷ, 𝑏ଵ, 𝑏ଶ, 𝑏ସ, 𝛾, 𝜁, 𝛽, 𝜓, 𝜇 > 0, 𝑚 ≥ 0 𝑎𝑛𝑑 ℎଶ − 3𝑙 < 0. 

 
Proof: 
By part (ii) of lemma 4, equation (3.18) has no positive roots. Lemma 3 ensures that all roots of (3.10) have 

negative real parts for 𝜏 > 0. Therefore, the steady state ൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱ of the delay system (3.2) is 

asymptotically stable for all 𝜏 ≥ 0.  We will introduce the Hopf Bifurcation theorem (Hassard et al, 1981), as 
shall be discussed below. 
To establish Hopf bifurcation at 𝜏 = 𝜏௖ , we need to show that 

𝑑

𝑑𝜏
𝜙(𝜏) ≠ 0.                                                                                   (3.20) 

 
Now to ensure that Hopf bifurcation occurs, we provide conditions on the parameters. Suppose the conditions 
in Lemma 4(ai) hold, then equation (3.17) has a positive root. We denote by 𝑔௝, 𝑗 ∈ {1} or 𝑗 ∈ {1, 2, 3} 
depending on the number of positive roots that equation (3.18) has. Observe that equation (3.17) has up to six 
roots i.e., ±ඥ𝑔௝  𝑓𝑜𝑟 𝑗 = 1, 2, 3. 
 
Notice that if the solution of equation (3.9) exists, it is among these ±ඥ𝑔௝ 𝑓𝑜𝑟 𝑗 = 1, 2, 3 and that if 𝜆 = 𝑖𝜎 is a 
root of equation (3.10), −𝑖𝜎 will also be a root. 
 
To equations (3.13) and (3.14) we substitute 𝜎௝ and then solve for 𝜏, which will then be of the form 

𝜏௝
(௡)

=
1

𝜎௝
sinିଵ ቈ

𝑘ଵ𝜎௝
ହ + (𝑑ଵ𝑘ଶ − 𝑘ଷ − 𝑑ଶ𝑘ଵ)𝜎௝

ଷ + (𝑑ଵ𝑘ଷ − 𝑑ଷ𝑘ଶ)𝜎௝

𝑘ଶ
ଶ𝜎௝

ଶ + (𝑘ଷ − 𝑘ଵ𝜎ଶ)ଶ
቉ + ቈ

2𝜋(𝑛 − 1)

𝜎௝
቉ 

where 𝑗 = 0, 1, 2. 
 
if we multiply (3.13) by  𝑘ଶ𝜎௖ and (3.14) by 𝑘ଷ − 𝑘ଵ𝜎௖

ଶ and also add the resulting product, we obtain 
𝑘ଶ

ଶ𝜎௖
ଶ sin 𝜎௖𝜏௖ + 𝑘ଶ𝜎௖(𝑘ଷ − 𝑘ଵ𝜎௖

ଶ) cos 𝜎௖𝜏௖ = 𝑘ଶ𝜎௖(𝑑ଵ𝜎௖
ଶ − 𝑑ଷ) 

−𝑘ଶ𝜎௖(𝑘ଷ − 𝑘ଵ𝜎௖
ଶ) cos 𝜎௖𝜏௖ + (𝑘ଷ − 𝑘ଵ𝜎௖

ଶ)ଶ sin 𝜎௖𝜏௖ = −(𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)(𝜎௖

ଷ − 𝑑ଶ𝜎௖) 
⟹ [𝑘ଶ

ଶ𝜎௖
ଶ + (𝑘ଷ − 𝑘ଵ𝜎௖

ଶ)ଶ] sin 𝜎௖𝜏௖ = 𝑘ଶ𝜎௖(𝑑ଵ𝜎௖
ଶ − 𝑑ଷ) − (𝑘ଷ − 𝑘ଵ𝜎௖

ଶ)(𝜎௖
ଷ − 𝑑ଶ𝜎௖) 
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sin 𝜎௖𝜏௖ =
𝑘ଶ𝜎௖(𝑑ଵ𝜎௖

ଶ − 𝑑ଷ) − (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)(𝜎௖

ଷ − 𝑑ଶ𝜎௖)

[𝑘ଶ
ଶ𝜎௖

ଶ + (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)ଶ]

 

 

𝜏௖ =
1

𝜎௝
sinିଵ ቈ

𝑘ଵ𝜎௝
ହ + (𝑑ଵ𝑘ଶ − 𝑘ଷ − 𝑑ଶ𝑘ଵ)𝜎௝

ଶ + (𝑑ଶ𝑘ଷ − 𝑑ଷ𝑘ଶ)𝜎௝

𝑘ଶ
ଶ𝜎௝

ଶ + (𝑘ଷ − 𝑘ଵ𝜎ଶ)ଶ
቉ + ቈ

2𝜋(𝑛 − 1)

𝜎௝
቉ 

 

𝜏௝
(௡)

=
1

𝜎௝
sinିଵ ቈ

𝑘ଵ𝜎௝
ହ + (𝑑ଵ𝑘ଶ − 𝑘ଷ − 𝑑ଶ𝑘ଵ)𝜎௝

ଶ + (𝑑ଶ𝑘ଷ − 𝑑ଷ𝑘ଶ)𝜎௝

𝑘ଶ
ଶ𝜎௝

ଶ + (𝑘ଷ − 𝑘ଵ𝜎ଶ)ଶ
቉ + ቈ

2𝜋(𝑛 − 1)

𝜎௝
቉ . 

 
Now let 𝜏௖ be the smallest of such 𝜏 for which 𝜙(𝜏௖) = 0. 
 

Therefore,  
𝜏௖ = 𝜏௝೎

(௡೎)
= minቄ𝜏௝

(௡)
> 0, 0 ≤ 𝑗 ≤ 2, 𝑛 ≥ 1ቅ

𝜎௖ = 𝜎௝೎

ቋ                      (3.21) 

 
Theorem 6:  
Let the critical time lag 𝜏௖ 𝑎𝑛𝑑 𝜎௖ be defined as (3.21) for the time lag 𝜏 and suppose that 3𝜎௖

଺ + 2ℎ𝜎௖
ସ + 𝑙𝜎௖

ଶ ≠
0 then the system of delay differential equation (3.2) exhibits the Hopf bifurcation at the steady 

state൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱. 

 
Proof: 
To establish Hopf bifurcation, we show that  

                  
𝑑𝜙(𝜏)

𝑑𝜏
|ఛୀఛ೎

≠ 0                                                                                           (3.22) 

 
and this guarantees that Hopf bifurcation occurs. For (3.21) to hold, both the real and imaginary parts of (3.11) 
must be zero. So we get the pair of equations 

𝑒ିఛ [(𝑘ଶ𝜎 + 2𝑘ଵ𝜙𝜎) sin 𝜙𝜎 + (𝑘ଷ + 𝑘ଶ𝜙 − 𝑘ଵ𝜙ଶ − 𝑘ଵ𝜎ଶ) cos 𝜙𝜎] 
                     +𝑑ଷ + 𝑑ଶ𝜙 + 𝑑ଵ𝜙ଶ + 𝜙ଷ − 𝑑ଵ𝜎ଶ − 3𝜙𝜎ଶ = 0                                                      (3.23) 

𝑖𝑒ିఛ [(𝑘ଵ𝜎ଶ − 𝑘ଷ − 𝑘ଶ𝜙 − 𝑘ଵ𝜙ଶ) sin 𝜙𝜎 + (𝑘ଶ𝜎 + 2𝑘ଵ𝜙𝜎) cos 𝜙𝜎] 
                    +𝑖(𝑑ଶ𝜎 + 2𝑑ଵ𝜙𝜎 + 3𝜙ଶ𝜎 − 𝜎ଷ) = 0                                                                       (3.24) 

 
which finally gives 

𝑒ିఛథ[(𝑘ଶ𝜎 + 2𝑘ଵ𝜙𝜎) sin 𝜙𝜎 + (𝑘ଷ + 𝑘ଶ𝜙 − 𝑘ଵ𝜙ଶ − 𝑘ଵ𝜎ଶ) cos 𝜙𝜎] 
                        = (𝑑ଵ + 3𝜙)𝜎ଶ − 𝑑ଷ − 𝑑ଶ𝜙 − 𝑑ଵ𝜙ଶ − 𝜙ଷ                                                         (3.25) 

𝑒ିఛథ[(𝑘ଵ𝜎ଶ − 𝑘ଷ − 𝑘ଶ𝜙 − 𝑘ଵ𝜙ଶ) sin 𝜙𝜎 + (𝑘ଶ𝜎 + 2𝑘ଵ𝜙𝜎) cos 𝜙𝜎] 
                  = 𝜎ଷ − 𝑑ଶ𝜎 − 2𝑑ଵ𝜙𝜎 − 3𝜙ଶ𝜎                                                                             (3.26) 

 
From equation (3.25), we have that  𝑒ିఛథ = 𝑒଴ since 𝜏𝜙 = 0. Then 𝑒଴ = 1, and selecting 𝜎 from the equation 
we obtain 

           𝑘ଶ𝜎 sin 𝜙𝜎 + 𝑘ଷ cos 𝜙𝜎 − 𝑘ଵ𝜎ଶ cos 𝜙𝜎 = 𝑑ଵ𝜎ଶ − 𝑑ଷ                                            (3.27) 
 
We at this moment differentiate equation (3.27) with respect to 𝜏 after which we evaluate it at 𝜏 = 𝜏௖ for which 
𝜙(𝜏௖) = 0 𝑎𝑛𝑑 𝜎(𝜏௖) = 𝜎௖ and get 

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

= 𝑘ଶ sin 𝜎௖ 𝜏௖ + 𝜏௖𝑘ଶ𝜎௖ cos 𝜎௖ 𝜏௖ − 𝑘ଷ𝜏௖ sin 𝜎௖𝜏௖ − 2𝑘ଵ𝜎௖ cos 𝜎௖𝜏௖ + 𝜏௖𝑘ଵ𝜎௖
ଶ sin 𝜎௖𝜏௖ 

= 2𝑑ଵ𝜎௖ 
⟹ 2𝑑ଵ𝜎௖ + (2𝑘ଵ𝜎௖ − 𝜏௖𝑘ଶ𝜎௖) cos 𝜎௖ 𝜏௖ + (𝑘ଷ𝜏௖ − 𝜏௖𝑘ଵ𝜎௖

ଶ − 𝑘ଶ) sin 𝜎௖ 𝜏௖ = 𝐴ଵ 



International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD  |  Available Online @ www.ijtsrd.com |  Volume – 2  |  Issue – 5  | Jul-Aug 2018    Page: 1690 

Select 𝜙 from (3.25), differentiate with respect to 𝜏 and evaluating at 𝜏 = 𝜏௖ for which 𝜙(𝜏௖) = 0 𝑎𝑛𝑑 𝜎(𝜏௖) =
𝜎௖ , we then obtain 

2𝑘ଵ𝜙𝜎 sin 𝜙𝜎 + 𝑘ଶ𝜙 cos 𝜙𝜎 + 𝑘ଵ𝜙ଶ cos 𝜙𝜎 = 3𝜙𝜎ଶ − 𝑑ଶ𝜙 − 𝑑ଵ𝜙ଶ − 𝜙ଷ                   (3.28) 
 

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

= 2𝑘ଵ𝜎 sin 𝜎௖𝜏௖ +2𝜏௖𝜙 𝑘ଵ𝜎௖ cos 𝜎௖𝜏௖ + 𝑘ଶ cos 𝜎௖𝜏௖ − 𝜏௖𝑘ଶ𝜙 sin 𝜎௖𝜏௖ + 2 𝑘ଵ𝜙 cos 𝜎௖𝜏௖ 

−𝑘ଵ𝜙ଶ𝜏௖ sin 𝜎௖𝜏௖ = 3𝜎௖
ଶ − 𝑑ଶ − 2𝑑ଵ𝜙 − 3𝜙ଶ 

 
But 𝜙(𝜏௖) = 0 

⟹ 3𝜎௖
ଶ − 𝑑ଶ − 2𝑘ଵ𝜎 sin 𝜎௖𝜏௖ − 𝑘ଶ cos 𝜎௖𝜏௖ = 𝐴ଵ 

 
Also from equation (3.26) we have 𝑒ఛథ = 𝑒଴ = 1. Selecting 𝜎 from (3.26) and differentiating with respect to 𝜏 
and evaluating at 𝜏 = 𝜏௖ for which 𝜙(𝜏௖) = 0 and 𝜎(𝜏௖) = 𝜎௖ we get 

𝑘ଵ𝜎ଶ sin 𝜎𝜏 − 𝑘ଷ sin 𝜎𝜏 + 𝑘ଶ𝜎 cos 𝜎𝜏 = 𝜎ଷ − 𝑑ଶ𝜎                                            (3.29) 
 
Then, 

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

= 2𝑘ଵ𝜎௖ sin 𝜎௖𝜏௖ + 𝑘ଵ𝜏௖𝜎௖
ଶ cos 𝜎௖𝜏௖ − 𝜏௖𝑘ଷ cos 𝜎௖𝜏௖ − 𝑘ଶ𝜏௖𝜎௖ sin 𝜎௖𝜏௖ + 𝑘ଶ cos 𝜎௖𝜏௖ 

= 3𝜎௖
ଶ − 𝑑ଶ 

⟹ 𝑑ଶ − 3𝜎௖
ଶ + (𝑘ଶ + 𝑘ଵ𝜏௖𝜎௖

ଶ − 𝜏௖𝑘ଷ) cos 𝜎௖𝜏௖ + (2𝑘ଵ𝜎௖ − 𝑘ଶ𝜏௖𝜎௖) sin 𝜎௖𝜏௖ = 𝐴ଶ 
 
Again, selecting 𝜙 from (3.26), then and differentiating with respect to 𝜏 and evaluating at 𝜏 = 𝜏௖ for which 
𝜙(𝜏௖) = 0 and 𝜎(𝜏௖) = 𝜎௖ we have 

−𝑘ଶ𝜙 cos 𝜎𝜏 − 𝑘ଵ𝜙ଶ sin 𝜎𝜏 + 2𝑘ଵ𝜙𝜎 cos 𝜎𝜏 = −2𝑑ଵ𝜙𝜎 − 3𝜙ଷ𝜎                             (3.30) 
 
Then,  

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

= −𝑘ଶ sin 𝜎௖𝜏௖ − 𝑘ଶ𝜏௖𝜙௖ cos 𝜎௖𝜏௖ − 2𝑘ଵ𝜙௖ sin 𝜎௖𝜏௖ − 𝑘ଵ𝜏௖𝜙௖
ଶ sin 𝜎௖𝜏௖ 

+2𝑘ଵ𝜎௖ cos 𝜎௖𝜏௖ − 2𝑘ଵ𝜙௖𝜎௖ sin 𝜎௖𝜏௖ = −2𝑑ଵ𝜎௖ − 6𝜙௖𝜎௖ 
⟹ −𝑘ଶ sin 𝜎௖𝜏௖ + 2𝑘ଵ𝜎௖ cos 𝜎௖𝜏௖ = −2𝑑ଵ𝜎௖ 

⟹ 2𝑑ଵ𝜎௖ − 𝑘ଶ sin 𝜎௖𝜏௖ + 2𝑘ଵ𝜎௖ cos 𝜎௖𝜏௖ = 𝐴ଶ 
 
At this point, we solve for the difference of 𝐴ଵ 𝑎𝑛𝑑 𝐴ଶ and the sum of 𝐴ଶ 𝑎𝑛𝑑 𝐴ଵ, that is  

𝐴ଵ
ௗఙ

ௗఛ
|ఛୀఛ೎

− 𝐴ଶ
ௗథ

ௗఛ
|ఛୀఛ೎

 and 𝐴ଶ
ௗఙ

ௗఛ
|ఛୀఛ೎

+ 𝐴ଵ
ௗథ

ௗఛ
|ఛୀఛ೎

 respectively, then we obtain 

𝐴ଵ

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

− 𝐴ଶ

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

 

 
⟹ [2𝑑ଵ𝜎௖ + (2𝑘ଵ𝜎௖ − 𝜏௖𝑘ଶ𝜎௖) cos 𝜎௖ 𝜏௖ + (𝑘ଷ𝜏௖ − 𝜏௖𝑘ଵ𝜎௖

ଶ − 𝑘ଶ) sin 𝜎௖ 𝜏௖] 
−[2𝑑ଵ𝜎௖ − 𝑘ଶ sin 𝜎௖𝜏௖ + 2𝑘ଵ𝜎௖ cos 𝜎௖𝜏௖] 

⟹ −𝜏௖𝑘ଶ𝜎௖ cos 𝜎௖ 𝜏௖ + (𝑘ଷ𝜏௖ − 𝜏௖𝑘ଵ𝜎௖
ଶ) sin 𝜎௖ 𝜏௖   

 
Since𝜏௖ = 𝜎௖, we have 

⟹ 𝑘ଶ𝜎௖
ଶ cos 𝜎௖ 𝜏௖ + (𝑘ଵ𝜎௖

ଷ − 𝑘ଷ𝜎௖) sin 𝜎௖ 𝜏௖ 
 
Therefore,  

𝐴ଷ = 𝑘ଶ𝜎௖
ଶ  𝑎𝑛𝑑  𝐴ସ = 𝑘ଵ𝜎௖

ଷ − 𝑘ଷ𝜎௖ 
Also 

𝐴ଶ

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

+ 𝐴ଵ

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

 

⟹ [𝑑ଶ − 3𝜎௖
ଶ + (𝑘ଶ + 𝑘ଵ𝜏௖𝜎௖

ଶ − 𝜏௖𝑘ଷ) cos 𝜎௖𝜏௖ + (2𝑘ଵ𝜎௖ − 𝑘ଶ𝜏௖𝜎௖) sin 𝜎௖𝜏௖] 
+[3𝜎௖

ଶ − 𝑑ଶ − 2𝑘ଵ𝜎 sin 𝜎௖𝜏௖ − 𝑘ଶ cos 𝜎௖𝜏௖] 
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Again remember that 𝜏௖ = 𝜎௖ , and we then obtain 
−𝑘ଶ𝜎௖

ଶ sin 𝜎௖𝜏௖ + (𝑘ଵ𝜎௖
ଷ − 𝑘ଷ𝜎௖) cos 𝜎௖𝜏௖ 

⟹ 𝑘ଶ𝜎௖
ଶ sin 𝜎௖𝜏௖ − (𝑘ଵ𝜎௖

ଷ − 𝑘ଷ𝜎௖) cos 𝜎௖𝜏௖ 
 
Therefore,  

𝐴ଷ = 𝑘ଶ𝜎௖
ଶ  𝑎𝑛𝑑 − 𝐴ସ = (𝑘ଵ𝜎௖

ଷ − 𝑘ଷ𝜎௖) 
 
The result of the differentiations, the difference and sum when put together, yields 

𝐴ଵ

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

− 𝐴ଶ

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

= 𝐴ଷ cos 𝜎௖𝜏௖ + 𝐴ସ sin 𝜎௖𝜏௖                                (3.31) 

𝐴ଶ

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

+ 𝐴ଵ

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

= 𝐴ଷ sin 𝜎௖𝜏௖ − 𝐴ସ cos 𝜎௖𝜏௖                               (3.32) 

 
To solve equations (3.31) and (3.32) simultaneously, we multiply equation (3.31) by 𝐴ଶ and equation (3.32) by 

𝐴ଵ, then subtract the product of (3.31) from (3.32) and this eliminates  
ௗఙ

ௗఛ
 .Therefore, we have 

𝐴ଵ𝐴ଶ

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

+ 𝐴ଵ
ଶ

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

= 𝐴ଵ𝐴ଷ sin 𝜎௖𝜏௖ − 𝐴ଵ𝐴ସ cos 𝜎௖𝜏௖ 

 

𝐴ଵ𝐴ଶ

𝑑𝜎

𝑑𝜏
|ఛୀఛ೎

− 𝐴ଶ
ଶ

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

= 𝐴ଶ𝐴ଷ cos 𝜎௖𝜏௖ + 𝐴ଶ𝐴ସ sin 𝜎௖𝜏௖ 

 

⟹ (𝐴ଵ
ଶ + 𝐴ଶ

ଶ)
𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

= (𝐴ଵ𝐴ଷ − 𝐴ଶ𝐴ସ) sin 𝜎௖𝜏௖ − (𝐴ଵ𝐴ସ + 𝐴ଶ𝐴ଷ) cos 𝜎௖𝜏௖ 

 
𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

=
(𝐴ଵ𝐴ଷ − 𝐴ଶ𝐴ସ) sin 𝜎௖𝜏௖ − (𝐴ଵ𝐴ସ + 𝐴ଶ𝐴ଷ) cos 𝜎௖𝜏௖

𝐴ଵ
ଶ + 𝐴ଶ

ଶ                         (3.33) 

 
Let us solve equations (3.13) and (3.14) simultaneously. 

                      𝑘ଶ𝜎௖ sin 𝜎௖𝜏௖ + (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ) cos 𝜎௖𝜏௖ = 𝑑ଵ𝜎௖

ଶ − 𝑑ଷ                                  (3.13) 
 

                      𝑘ଶ𝜎௖ cos 𝜎௖𝜏௖ − (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ) sin 𝜎௖𝜏௖ = 𝜎௖

ଷ − 𝑑ଶ𝜎௖                                 (3.14) 
 
If we multiply (3.13) by 𝑘ଷ − 𝑘ଵ𝜎௖

ଶ and (3.14) by 𝑘ଶ𝜎௖  and add the resulting products, we obtain 
𝑘ଶ𝜎௖(𝑘ଷ − 𝑘ଵ𝜎௖

ଶ) sin 𝜎௖𝜏௖ + (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)ଶ cos 𝜎௖𝜏௖ = (𝑑ଵ𝜎௖

ଶ − 𝑑ଷ)(𝑘ଷ − 𝑘ଵ𝜎௖
ଶ) 

 
𝑘ଶ

ଶ𝜎௖
ଶ cos 𝜎௖𝜏௖ − 𝑘ଶ𝜎௖(𝑘ଷ − 𝑘ଵ𝜎௖

ଶ) sin 𝜎௖𝜏௖ = 𝑘ଶ𝜎௖(𝜎௖
ଷ − 𝑑ଶ𝜎௖) 

 
⟹ 𝑘ଶ

ଶ𝜎௖
ଶ cos 𝜎௖𝜏௖ + (𝑘ଷ − 𝑘ଵ𝜎௖

ଶ)ଶ cos 𝜎௖𝜏௖ = (𝑑ଵ𝜎௖
ଶ − 𝑑ଷ)(𝑘ଷ − 𝑘ଵ𝜎௖

ଶ) + 𝑘ଶ𝜎௖(𝜎௖
ଷ − 𝑑ଶ𝜎௖) 

 
[𝑘ଶ

ଶ𝜎௖
ଶ + (𝑘ଷ − 𝑘ଵ𝜎௖

ଶ)ଶ] cos 𝜎௖𝜏௖ = (𝑑ଵ𝜎௖
ଶ − 𝑑ଷ)(𝑘ଷ − 𝑘ଵ𝜎௖

ଶ) + 𝑘ଶ𝜎௖(𝜎௖
ଷ − 𝑑ଶ𝜎௖) 

 

⟹ cos 𝜎௖𝜏௖ =
𝑘ଶ𝜎௖(𝜎௖

ଷ − 𝑑ଶ𝜎௖) + (𝑑ଵ𝜎௖
ଶ − 𝑑ଷ)(𝑘ଷ − 𝑘ଵ𝜎௖

ଶ)

[𝑘ଶ
ଶ𝜎௖

ଶ + (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)ଶ]

                             (3.34) 

 
On the other hand, if we multiply (3.13) by 𝑘ଶ𝜎௖ and (3.14) by 𝑘ଷ − 𝑘ଵ𝜎௖

ଶ and also add the resulting product, 
we obtain 

𝑘ଶ
ଶ𝜎௖

ଶ sin 𝜎௖𝜏௖ + 𝑘ଶ𝜎௖(𝑘ଷ − 𝑘ଵ𝜎௖
ଶ) cos 𝜎௖𝜏௖ = 𝑘ଶ𝜎௖(𝑑ଵ𝜎௖

ଶ − 𝑑ଷ) 
 

−𝑘ଶ𝜎௖(𝑘ଷ − 𝑘ଵ𝜎௖
ଶ) cos 𝜎௖𝜏௖ + (𝑘ଷ − 𝑘ଵ𝜎௖

ଶ)ଶ sin 𝜎௖𝜏௖ = −(𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)(𝜎௖

ଷ − 𝑑ଶ𝜎௖) 
 

⟹ [𝑘ଶ
ଶ𝜎௖

ଶ + (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)ଶ] sin 𝜎௖𝜏௖ = 𝑘ଶ𝜎௖(𝑑ଵ𝜎௖

ଶ − 𝑑ଷ) − (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)(𝜎௖

ଷ − 𝑑ଶ𝜎௖) 
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sin 𝜎௖𝜏௖ =
𝑘ଶ𝜎௖(𝑑ଵ𝜎௖

ଶ − 𝑑ଷ) − (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)(𝜎௖

ଷ − 𝑑ଶ𝜎௖)

[𝑘ଶ
ଶ𝜎௖

ଶ + (𝑘ଷ − 𝑘ଵ𝜎௖
ଶ)ଶ]

                                (3.35) 

 
Substituting (3.34) and (3.35) into equation (3.33) it yields (3.36) below  

𝑑𝜙

𝑑𝜏
|ఛୀఛ೎

=
3𝜎௖

଺ + 2ℎ𝜎௖
ସ + 𝑙𝜎௖

ଶ

𝐴ଵ
ଶ + 𝐴ଶ

ଶ ≠ 0                                                                    (3.36) 

 
Therefore we conclude that Hopf bifurcation occurs when 𝜏 passes through the critical value which is assumed 
to be 𝜏௖ . 
 
IV. ANALYSIS OF RESULT 
Certainly, our interest is in determining if the steady 
state of the model system is stable or not. When the 
slightest disturbance completely alters the behavior of 
the system, them it is impossible to predict the long 
term evolution of the system under consideration. We 
therefore showed in this research work with the 
parameter value by Long et al (2008) that critical 
delay beyond which the steady state would lose its 
stability through oscillation does not exist. 
 
Biologically, proposition (4i) states that if 𝑎ଵ +
(௕భା௕మ)ఊ

௕ర
> 𝜁 +

ఉ௔యట

௔భఓ
  then the steady state ቀ

ట

௔భ
, 0,

ఊ

௕ర
ቁ 

of system (4.18) is asymptotically stable and this 
implies that there will be viral clearance because, 
CTL will both cytolitically and non cytolitically take 
care of infected hepatocytes before they can produce 
sufficient amounts of viral progeny which finally 
results in the absence of the virus. This is shown in 
figure (1a – 1c) and (2a – 2c). Figure 1d focused on 
the behavior of the density of hepatitis B virus 
infected hepatocytes and CTL when the delay 
parameter 𝜏 = 1 and show the interaction between 
virus and immune response.   

 
Figure (1a – 1d): Numerical simulation of the delay 
model system (18) where parameter values, 𝑎ଵ =
0.002, 𝛾 = 1𝐸 − 3, 𝑎ଷ = 1500, 𝑎ସ = 0.3, 𝑏ଵ =
500, 𝑏ଶ = 1500, 𝜓 = 1, 𝑏ସ = 0.2, 𝜁 = 0.04, 𝜇 = 

 
0.58, 𝛽 = 10 (𝐿𝑜𝑛𝑔 𝑒𝑡 𝑎𝑙, 2008)𝑎𝑛𝑑 𝜏

= 1(𝐸𝑖𝑘𝑒𝑛𝑏𝑒𝑟𝑟𝑦 𝑒𝑡 𝑎𝑙, 2009). 
 

 
Figure (2a – 2c): Numerical simulation of the delay 
model system (18) where parameter values, 𝑎ଵ =
0.002, 𝛾 = 1𝐸 − 3, 𝑎ଷ = 1500, 𝑎ସ = 0.3, 𝑏ଵ =
500, 𝑏ଶ = 1500, 𝜓 = 1, 𝑏ସ = 0.2, 𝜁 = 0.04, 𝜇 =

0.58, 𝛽 = 10 𝑎𝑛𝑑 𝜏 = 1 𝑤𝑖𝑡ℎ time ranging from 0 to 
2.5. 

 

 
 

Figure (3a – 3c): Numerical simulation of the delay 
model system (18) where parameter values, 𝑎ଵ =
0.002, 𝛾 = 1𝐸 − 3, 𝑎ଷ = 1500, 𝑎ସ = 0.3, 𝑏ଵ =
500, 𝑏ଶ = 1500, 𝜓 = 1, 𝑏ସ = 0.2, 𝜁 = 0.04, 𝜇 =

0.58, 𝛽 = 10 𝑎𝑛𝑑 𝜏 = 1 𝑤𝑖𝑡ℎ time ranging from 0 to 
50 
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Figure (1a – 1d), (2a – 2c) and (3a – 3c) shows the 
delay effect on equation (3.2) with delay value 𝜏 = 1. 
The infected steady state of proposition (1i) of delay 
system (3.2) remains stable if the conditions in 
theorem 5 which states that the uninfected steady state 

൭
𝜓

𝑎ଵ
ൗ , 0,

𝛾
𝑏ସ

ൗ ൱ of the delay system (3.2) is 

asymptotically stable for all 𝜏 ≥ 0 if 𝜁 +
ఉ௔యట

௔భఓ
< 𝑎ଵ +

(௕భା௕మ)ఊ

௕ర
, 𝑎ଵ, 𝑎ଷ, 𝑏ଵ, 𝑏ଶ, 𝑏ସ, 𝛾, 𝜁, 𝛽, 𝜓, 𝜇 > 0, 𝑚 ≥

0 𝑎𝑛𝑑 ℎଶ − 3𝑙 < 0 
 
 are satisfied. Then, we can conclude that 
incorporating a discrete intracellular time delay, into 
system (3.1) does not change the stability of the 
steady state of proposition (1i). In this case, even if 
the immune response is maintained and virus persists, 
the virus may persist without causing much harm to 
the liver since the immune system is strongly 
responsive in eliminating the virus from within the 
hepatocytes without killing the hepatocytes. 
 
If theorem 8 which says that suppose that 3𝜎௖

଺ +
2ℎ𝜎௖

ସ + 𝑙𝜎௖
ଶ ≠ 0 then the system of delay differential 

equation (4.18) exhibits the Hopf bifurcation at the 

steady state ቀ
ట

௔భ
, 0,

஌

௕ర
ቁ is satisfied, we have that the 

stability of the infected steady state of proposition (1i) 
of delay model equation (3.2) depends on the delay 
value and the delay can induce oscillation in the 
number of the uninfected hepatocytes, infected 
hepatocytes and CTL. If the individuals’ ALT level is 
high, then, the virus may have escaped the control of 
the CTL and HBV infection is reactivated. However, 
if the immune control succeeds, the virus population 
will utterly be destroyed. Ciupe et al (2007), 
demonstrated that consideration of delayed cytotoxic 
and non cytotoxic immune reactions and the presence 
of cells refactory to infection was necessary to 
properly understand the dynamics of HBV acute 
infection and progression to chronic disease. 
 
V. SUMMARY AND CONCLUSION 
In summary, we have that clearance of acute HBV 
infection occurs subsequent to the appearance of the 
Cytotoxic T Lymphocyte (CTL) cells. The clearance 
may be cytolytic or noncytolytic. These events are 
accompanied by a significant increase in apoptosis 
and regeneration of hepatocytes as indicated in figure 
(2a – 2c) and (3a – 3c). the liver has a mark ability to 

regenerate. Resection of half of the human liver is 
followed within 2 – 4 weeks by full restoration of the 
liver structure, size and function. The influx of the 
cytotoxic T lymphocytes will delay the accumulation 
of virus free hepatocyte. More so, chronically infected 
individuals can exhibit to some level T – cell 
accumulation, cytokine expression, and apoptosis. 
Our model predicted replacement of infected 
hepatocytes with regenerated cells which by known 
mechanism remain protected from reinfection in the 
individual after immune response.     
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