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ABSTRACT

In this paper, we prove a common fixed point theo
in modified intuitionistic fuzzy metric space |
combining the ideas of pointwise F- weak
commutativity and reciprocal otinuity of mappings
satisfying contractive conditions. We also ¢
example to prove validity of proved res
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1. INTRODUCTION AND PRELIMINARIES:
Recently, R. Saadati et. al [10] introduced
modified intuitionistic fuzzy metric space and peoh
some fixed point theorems for compatible and we
compatible mapsThe paper [10] is the inspiration
a large number of papers [1-396-11] that emplo
the use of modified intuitionistic fuzzy metric s
and its applications.

In this paperwe prove a common fixed point theor
in modified intuitionistic fuzzy metric space b
combining the ideas of pointwise R- weak
commutativity and reciprocal continuity of mappir
satisfying contractive conditions. We also ¢
example to prove validity of proved rest

Firstly, we recall the following notions that witle
used in the sequel.

For every i, X2), (Y1, ¥2) in L*, Then [*, <+) is a
complete lattice.
We denote its units by 0= (0, 1) and 1-= (1, 0).

Definition 1.1 [5]:

A triangular norm t{norm) onL* is a mapping F

(L¥? - L* satisfying the following condition

1. F & 1) =xforallxinL*,

2. F & yY=F (X forallx, yinL*

3. F & F (v,2))=F (F (xX,y),2z)fore,y, z
inL*,

4. If for all x, X, y, yin L*, x <+ X andy <+ Yy’
impliesF & y)<F &,VY).

Definition 1.2 [4,5]:

A continuoust-norm F onL* is called continuous—
represent table ithere exist a continuott- norm *
and a continuous—co norm¢ on [0, 1] such that for

all x=(x,%),y=(y, y)O 017 F & y =
(% * ¥ %0 Y.

Definition 1.3 [10]:

Let M, N are fuzzy sets fron X?x(0,+w) - [0,1]
such thati(x, y, t) + N(x, y1) <1 for allx, yin X and

t > 0. The 3- tuple K, {,n, F ) is said to be a

modified intuitionistic fuzzy metric space X is an
arbitrary non empty set, F is a continud-

represent table and ¢, is a mapping
Lemma 1.1 [4]: X?x(0,+0) - L*  satisfying the  followinc
Consider the sdt* and the operatiof.- defined by ¢onditions for every, yin X andt, s > Q
L* ={( % x:( % X 00,1]% x+ %<1} @ Jyy Y, ) >0 00
(X X%) S (W Yo) = XS Y %2 Y, 0) (o Y, )=1sifx=y;

©) Cun XY d=yn (%)
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d) {un Xy, t+92F ((yy X 2,3, {yy @y, limf(x)=lim g(x) = z for somez in X but either

2 limdZ,, ((fgx, gfx, § #1,. or the limit does not exist
) {un Xy, .):(0,40) - L* is continuous. now M o 9% -
| for all z in X.

In this case,(,, \is called a modified intuitionistic Hfinition 1.9[11]:

fuzzy metric. Here, A pair of self mappings(f, g) of a modified
Cun XKy, =My, ) NXY,I). intuitionistic fuzzy metric spaceX({,, ,, F ) is said

to be R-weakly commuting at a poink in X if
Remark1.1. [11]:

t
In a modified intuitionistic fuzzy metric spaceX( ZMYN(ng“’ gf)“’t)z” Z“"vN( Rt gx”%?) for some

{un: F ).M(x,y,.)is non decreasing amix, y, .) R>0.
is non- increasing for al, yin X. Henced,, , (X, Y, Definition 1.10[11];
) is non- decreasing with respect for all x, yin X.. - The two self-map$ andg of a modified intuitionistic
fuzzy metric spaceX, ¢,, ,, F )are called point wise

A sequence X o} in a modified intuitionistic fuzzy RWeakly commuting oiXif given inhX there exiﬁts
metric space > 0 suc that

(X, {wn» F ) is called a Cauchy sequence if for eacfy, ( fgx, gfx t) 2. ZM,N( % gx%q) .
£>0 andt > 0, there existsn,JU such that

X, X, t)>. (1-£,¢) for eachn,m= n, and for 2-Lemmas:
;T{N( X7 € : k The proof of our result is based upon the following

Lemmas:

Definition 1.4 [10]:

Definition 1.5[10]:

L = Lemma2.1[§].
A sequence X o} in a modified intuitionistic fuzzy T
metric space Let X, {y v, T ) be modified intuitionistic fuzzy

(X, {un, F ) is said to be convergentxan X, metric space and for abk,yd X, t>0 and if for a
numberk (1(0,1),

CunX Yy, k)2 Jy (X %Y.
Thenx =y.

denoted byx, — x if
lim ¢, v (Xn, X, ) =1-forallt.

Definition 1.6 [10]: Lemma2.2[8].
A modifiedintuitionistic fuzzy metric space&X( {y; v, [et X, ¢y v T ) be modified intuitionistic fuzzy

F) is said to be complete if every Cauchy sequésice ;. space andy,} be a sequence iX. If there
converges to a point of it. n

exists a numbek [J(0,1)such that:

Definition 1.7 [10, 11] Cun Yo Yosrn KO 21 Cy 0 (Yogs Vi D
A pair of self mappings(f, g) of modified Fqra1t>0andn=1. 23
intuitionistic fuzzy metric spaceX( ¢,, . F ) is said .

Then{y,} is a Cauchy sequenceXn
to be compatible if limZ, ((fgx, afx, =1,
whenever {x} is a sequence inX such that 3 Main Resuts
Lemma 3.1:
Let (X,{, v, T ) be a modified intuitionistic fuzzy
metric space ankkt (A, S)and (B, T)be pairs of self

Definition 1.8 [11] mappings orX satisfying
Two self-mapping$ andg are called non-compatible(g_l)A(x) OT(X), A X0 § X,

if there exists at least one sequedog} such that (32)there exists a constaktd (0,1)such that

lim f(x,) =lim g( x) = zfor somezin X.

@ IJTSRD | Available Online @ www.ijtsrd.com plMme — 2 | Issue —5 | Jul-Aug 2018 Page: 1517



International Journal of Trend in Scientific Resdaand Development (IJTSRD) ISSN: 2456-6470

ZM,N (AX,By,kt)Z L+ min {ZM,N (Ty’ By, t), ZM,N
(Sx,AX,1),{ \ (SX,By,a 1)}
For allx,yO X, t > 0 anda(0,2). Then the

continuity of one of the mappings aompatible pair
(A, S)or (B, T)on (X,{,, \,» T) implies their reciprocal

continuity.

Pr oof:

Proof:
Proof of this result easily follows condition (3.2hd
definition of compatible maps.

Theorem 3.1:
Let (X,{\ n» T) bea complete modified intuitionistic

fuzzy metricspace. Further, lefA, S)and (B, T) be
point wise R- weakly commuting pairs of self
mappings ofX satisfying (3.1), (3.2). If one of the
mappings in compatible pai(A, S)or (B, T) is
continuousthenA, B, SandT have a unique common
fixed pointin X,

Let X U X. By (3.1), we define the sequencesg}t{and {y»} in X such that foralh=0, 1, 2 ...

Yon = AXon = TXon+1, Yon+1 = BXons1 = S¥on+2,

We show that ¥} is a Cauchy sequence ¥ By (3.2) taker =1~ 3,30(0,1) , we have
Cn (Yoness Yone 2o KO = § iy n (BXo 1r Ay 5 KI= 0y (A%, 5 B, KE

2. Min{ ¢y 0 (Monens Bt v (SKo 20 A%y o0 3w (S% o By () )
=Min{ Qi Vans Yoreas DS o Yoo 20D w8 Vi 10 Yot = B}

= min{ZM’N (y2n, ygmlxt)!ZM N (y2n+1' Yo 2’t)’Jf}

2. min{i mon Vans Yot 08w Vo 10 Yo 2006 w8 (Yo 10 Yo 28 t}

Takingf - 1, we have

ZM,N (y2n+1' y2n+2’ kt)ZL* min{ZM N (yZn’ y2nf- b t)’ZM ,N(y2ﬁ- iy y2+ 2 t)’Z M ,N(yaﬂ i} yZH 2 9
ZM,N (y2n+1' y2n+ Al kt)ZL* min{ZM N (y2n’ y2nf- iR t)’ZM ,N(y2ﬁ- v y2ﬁ- 2 t}

ZM N (y2n+1' y2n+ 21 kt) 2|_* ZM N ( y2n’ yan- 1 t)
Similarly

ZM,N (y2n+2’ y2n+3’ kt) ZL* ZM N ( y2rH- 1 y2n»‘- 2 t)
Therefore, for any andt, we have

$un Vo Yo KO = o (Vieas Yoo D

Hence, by Lemma 2.2,y{} is a Cauchy sequence K Since X is complete,y{} converges toz in X. Its
subsequenceson}, { Txen+1}, { BXens1} and {Sxn+2} also converges tn

Now, suppose that\( § is a compatible pair arflis continuous. Then by Lemma 2Aand S are reciprocally

continuous, the®Ax—Sz, ASx— Azasn— « . As,
lim {, (ASX, SAx JX=1.

$un(Az Sz )=1..
Hence Az = Sz.

@, 9 is a compatible pair. This implies

SinceA(X) O T( X) , there exists a poimtin X such thalAz = Tp = Sz.

By (3.2), taker =1,
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Zun(Az Bp K=, min{¢y \ (TP BP 1y ( SZ AD)E i\ ( SZ BRjt
Zun(Az Bp K2 min{¢, (Az Bp 1,y ( Az AZ)Y,  ( Az Bpjt
Sun(AzZ Bp kyz. ¢y v(AZ Bp)

Thus, by Lemma 2.1, we ha¥e = Bp.
Thus,Az = Bp =Sz = Tp.

Since,A andSare point wisdR — weakly commuting mappings, there exRts 0, such that

Zun(ASz SAZ)R, 0,0 Az SHR)=1,

Therefore ASz = SAandAAz = ASz = SAz = SSz.
Similarly, B andT are point wisdR-weakly commuting mappings, we haBBp = BTp =TBp =TTp.

Again by (3.2), taker =1,

Qun(AAZ Bn K2, min{¢, \ (TP Bp X<y ( SAZ AADL,, \ ( SAZ Bl
{un(AAZ Az k)ZL* min{ZM,N (TP TpE{un ( AAZ AR, ( AAZ A)},
Cun(AAZ AZ 2. 0, o ( AAZ A2

By Lemma 2.1, we havRAz = A z = SAzHenceAzis common fixed point oA andS. Similarly by (3.2),Bp
= Az is a common fixed point oB and T. Hence,Az is a common fixed point ofA, B, Sand T.

For Uniqueness.
We can easily prove uniqgueness by using (3.2).

Corollary 3.1:
Let(X,{,, v T ) be acomplete modified intuitionistic fuzaetricspace. Further, let andB are reciprocally

continuous mappings oXsatisfying
(3-3) Cu n (AX By k) 2. min{¢y (% BY 9.80 (X AX )y, (X By }

For allx, yd X, t>0and a'D(O, 2) then pairA andB has a unique common fixed point.

Example 2.1:
Let X = [0, 20] and for each> 0, define

{un(X Yy t)= t , |x—y| . Then K,{,, - T ) is complete modified intuitionistic fuzzy metri
| G o |

space. Lef, B, SandT be self mappings of X defined as

A(2)=2Au=3ifu>0,
Bu)=2ifu=2oru>6,Bu=6if0<u<6,
S(2)=2,S(u)=6ifu>0,
T(2)=2TW=12if0<u<6,T(U)=u—-3ifu>6.

ThenA, B, SandT satisfy all the conditions of above theorem withl(0, 1) and have a uniqgue common fixed
pointu = 2.
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