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Abstract

The nonlinear asymmetric Kelvin-Helmholtz
stability of the cylindrical interface between the
vapor and liquid phases of a fluid is studied when
the phases are enclosed between two cylindri-
cal surfaces coaxial with the interface, and when
there is mass and heat transfer across the inter-
face. The method of multiple time expansion is
used for the investigation. The evolution of am-
plitude is shown to be governed by a nonlinear
first order differential equation. The stability cri-
terion is discussed, and the region of stability is
displayed graphically. Also investigated in this
paper is the viscous linear potential flow.

Keywords Kelvin-Helmholtz stability, Mass
and heat Transfer, Cylindrical flow.0

1. Introduction

In dealing with flow of two fluids divided by
an interface, the problem of interfacial stability is
usually studied with the neglect of heat and mass
transfer across the interface. However, there are
situations when the effect of mass and heat trans-
fer across the interface should be taken into ac-
count in stability discussions. For instance, the

phenomenon of boiling accompanies high heat
and mass transfer rates which are significant in
determining the flow field and the stability of the
system.

Hsieh [1] presented a simplified formulation
of interfacial flow problem with mass and heat
transfer, and studied the problems of Rayleigh-
Taylor and Kelvin-Helmholtz stability in plane
geometry.

The mechanism of heat and mass transfer
across an interface is important in various indus-
trial applications such as design of many types of
contacting equipment, e.g., boilers, condensers,
pipelines, chemical reactors, and nuclear reac-
tors, etc.

In the nuclear reactor cooling of fuel rods by
liquid coolants, the geometry of the system in
many cases is cylindrical. We have, therefore,
considered the interfacial stability problem of
a cylindrical flow with mass and heat transfer.
Nayak and Chakraborty[2] studied the Kelvin-
Helmholtz stability of the cylindrical interface
between the vapor and liquid phases of a fluid,
when there is a mass and heat transfer across
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the interface, while Elhefnawy[3] studied the ef-
fect of a periodic radial magnetic field on the
Kelvin-Helmholtz stability of the cylindrical in-
terface between two magnetic fluids when there
is mass and heat transfer across the interface.
The analysis of these studies was confined within
the frame work of linear theory. They both found
that the dispersion relations are independent of
the rate of interfacial mass and heat transfer.
Hsieh[4] found that from the linearized analysis,
when the vapor region is hotter than the liquid
region, as is usually so, the effect of mass and
heat transfer tends to inhibit the growth of the
instability. Thus for the problem of film boil-
ing, the instability would be reduced yet would
persist according to linear analysis.

It is clear that such a uniform model based
on the linear theory is inadequate to answer the
question of whether and how the effect of heat
and mass transfer would stabilize the system, but
the nonlinear analysis is needed to answer the
question.

The purpose of this paper is to investigate the
Kelvin-Helmholtz asymmetric nonlinear stability
of cylindrical interface between the vapor and
liquid phases of a fluid when there is a mass and
heat transfer across the interface.

The nonlinear problem of Rayleigh-Taylor in-
stability of a system in a cylindrical geometry is,
however, studied by the present author in (Lee[5-
6]).

The multiple time scale method is used to ob-
tain a first order nonlinear differential equation,
from which conditions for the stability and in-
stability are determined.

In more recent years,Awashi, Asthana and
Zuddin[7] considered a problem in which a vis-
cous potential flow theory is used to study the
nonlinear Kelvin-Helmholtz instability of the in-
terface between two viscous ,incompressible and
thermally conducting fluids.

The basic equations with the accompanying
boundary conditions are given in Sec.2. The

first order theory and the linear dispersion re-
lation are obtained in Sec.3. In Sec .4 we have
derived second order solutions. In Sec.5 a first
order nonlinear differential equation is obtained,
and the situations of the stability and instability
are summarized. In Sec.6 we investigate linear
viscous potential flow. In Sec.7 some numerical
examples are presented.

2. Formulation of the problem and basic
equations0

We shall use a cylindrical system of coordi-
nates (r, θ, z) so that in the equilibrium state
z−axis is the axis of asymmetry of the system.
The central solid core has a radius a. In the
equilibrium state the fluid phase ”1”, of den-
sity ρ(1), occupies the region a < r < R, and,
the fluid phase ”2”, of density ρ(2), occupies the
region R < r < b. The inner and outer fluids
are streaming along the z axis with uniform ve-
locities U1 and U2, respectively. The temper-
atures at r = a, r = R, and r = b are taken
as T1, T0, and T2 respectively. The bounding
surfaces r = a, and r = b are taken as rigid.
The interface, after a disturbance, is given by
the equation

F (r, z, t) = r −R− η(θ, z, t) = 0, (2.1)

where η is the perturbation in radius of the inter-
face from its equilibrium value R, and for which
the outward normal vector is written as

n =
∇F

|∇F | =
{

1 +
(

1
r

∂η

∂θ

)2

+
(

∂η

∂z

)2}−1/2

×
(
er − 1

r

∂η

∂θ
eθ − ∂η

∂z
ez

)
, (2.2)

we assume that fluid velocity is irrotational in
the region so that velocity potentials are φ(1) and
φ(2) for fluid phases 1 and 2. In each fluid phase

∇2φ(j) = 0. (j = 1, 2) (2.3)

The solutions for φ(j)(j = 1, 2) have to satisfy
the boundary conditions. The relevant bound-
ary conditions for our configuration are

(i) On the rigid boundaries r = a and r = b:
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The normal field velocities vanish on both cen-
tral solid core and the outer bounding surface.

∂φ(1)

∂r
= 0 on r = a, (2.4)

∂φ(2)

∂r
= 0 on r = b, (2.5)

(ii) On the interface r = R + η(θ, z, t):

(1) The conservation of mass across the inter-
face:

[[
ρ

(
∂F

∂t
+∇φ · ∇F

)]]
= 0,

or
[[

ρ

(
∂φ

∂r
− ∂η

∂t
− 1

r

∂η

∂θ

∂φ

∂θ
− ∂η

∂z

∂φ

∂z

)]]
= 0,

(2.6)
where [[ h]] represents the difference in a quantity
as we cross the interface,i.e., [[ h]] = h(2) − h(1),
where superscripts refer to upper and lower flu-
ids, respectively.

(2) The interfacial condition for energy is

Lρ(1)

(
∂F

∂t
+∇φ(1) · ∇F

)
= S(η), (2.7)

where L is the latent heat released when the fluid
is transformed from phase 1 to phase 2. Phys-
ically, the left-hand side of (2.7) represents the
latent heat released during the phase transforma-
tion, while S(η) on the right-hand side of (2.7)
represents the net heat flux, so that the energy
will be conserved.

In the equilibrium state, the heat fluxes in
the direction of r increasing in the fluid phase
1 and 2 are −K1(T1 − T0)/R log(a/R) and
−K2(T0−T2)/R log(R/b), where K1 and K2 are
the heat conductivities of the two fluids. As in
Hsieh(1978), we denote

S(η) =
K2(T0 − T2)

(R + η)(log b− log(R + η))

− K1(T1 − T0)
(R + η)(log(R + η)− log a)

, (2.8)

and we expand it about r = R by Taylor’s ex-
pansion, such as

S(η) = S(0) + ηS′(0) +
1
2
η2S′′(0) + · · · , (2.9)

and we take S(0) = 0, so that
K2(T0 − T2)
R log(b/R)

=
K1(T1 − T0)
R log(R/a)

= G(say), (2.10)

indicating that in equilibrium state the heat
fluxes are equal across the interface in the two
fluids.

From (2.1), (2.7), and (2.9), we have

ρ(1)

(
∂φ(1)

∂r
− ∂η

∂t
− 1

r

∂η

∂θ

∂φ(1)

∂θ
− ∂η

∂z

∂φ(1)

∂z

)

= α(η + α2η
2 + α3η

3), (2.11)
where

α =
G log(b/a)

LR log(b/R) log(R/a)
,

α2 =
1
R

(
−3

2
+

1
log(b/R)

− 1
log(R/a)

)
,

α3 =
1

R2

[
11
6
− 2 log(R2/ab)

log(b/R) log(R/a)

+
log3(b/R) + log3(R/a)

{log(b/R) log(R/a)}2 log(b/a)

]
.

(3) The conservation of momentum balance,
by taking into account the mass transfer across
the interface, is

ρ(1)(∇φ(1) · ∇F )
(

∂F

∂t
+∇φ(1) · ∇F

)

= ρ(2)(∇φ(2) · ∇F )
(

∂F

∂t
+∇φ(2) · ∇F

)

+(p2 − p1 + σ∇ · n)|∇F |2, (2.12)
where p is the pressure and σ is the surface ten-
sion coefficient, respectively.0 By eliminating the
pressure by Bernoulli’s equation we can rewrite
the above condition (2.12) as

———————————————————
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[[
ρ

{
∂φ

∂t
+

1
2

(
∂φ

∂r

)2

+
1
2

(
1
r

∂φ

∂θ

)2

+
1
2

(
∂φ

∂z

)2

−
{

1 +
(

1
r

∂η

∂θ

)2

+
(

∂η

∂z

)2}−1

×
(

∂φ

∂z

∂η

∂z
+

1
r2

∂φ

∂θ

∂η

∂θ
− ∂φ

∂r

)(
∂η

∂t
+

∂φ

∂z

∂η

∂z
+

1
r2

∂φ

∂θ

∂η

∂θ
− ∂φ

∂r

)}]]

=
σ

(R + η)|∇F |
{

1 +
(

1
r

∂η

∂θ

)2 2
|∇F |2

}

− σ

|∇F |3
[
∂2η

∂z2

{
1 +

(
1
r

∂η

∂θ

)2}
− 2

r2

∂η

∂θ

∂2η

∂θ∂z

∂η

∂z
+

1
r2

∂2η

∂θ2

{
1 +

(
∂η

∂z

)2}]
. (2.13)

————————————————————————————–

When the interface is perturbed from the equi-
librium η = 0 to η = A exp[i(kz + mθ−ωt)], the
dispersion relation for the linearized problem is

D(ω, k, m) = a0ω
2 + (a1 + ib1)ω + a2 + ib2 = 0,

(2.14)
where

a0 = ρ(1)E(1)
m − ρ(2)E(2)

m ,

a1 = 2k{ρ(2)E(2)
m U2 − ρ(1)E(1)

m U1},
b1 = α{E(1)

m − E(2)
m },

a2 = k2{ρ(1)E(1)
m U2

1 − ρ(2)E(2)
m U2

2 }
− σ

R2
(R2k2 + m2 − 1),

b2 = αk{E(2)
m U2 −E(1)

m U1},
where for the simplicity of notation, we used

E(j)
m = E(j)

m (k, R), (j = 1, 2)

where E
(j)
m (k, R), (j = 1, 2) are explained by

(3.4)-(3.5). (i) When α = 0, (2.14) reduces to

a0ω
2 + a1ω + a2 = 0. (2.15)

Therefore the system is stable if

a2
1 − 4a0a2 > 0, (2.16)

or
σ

R2
(R2k2 + m2 − 1)

+k2 ρ(1)ρ(2)E
(1)
m E

(2)
m (U2 − U1)2

ρ(1)E
(1)
m − ρ(2)E

(2)
m

> 0. (2.17)

It is clear from the above inequality that the
streaming has a destabilizing effect on the stabil-
ity of a cylindrical interface, because E

(2)
m is al-

ways negative from the properties of Bessel func-
tions. (ii) when α 6= 0, we find that necessary
and sufficient stability conditions for (2.14) are
[3]

b1 > 0, (2.18)

and
a0b

2
2 − a1b1b2 + a2b

2
1 < 0, (2.19)

since a0 is always positive.0

Putting the values of a0, a1, a2, b1 and b2

from(2.14) into(2.18) and( 2.19) we notice that
the condition (2.18) is trivially satisfied since α
is always positive, and from properties of Bessel
functions E

(2)
m is always negative. From (2.19), it

can be shown that the condition for the stability
of the system is

σ

R2
(R2k2+m2−1)+k2 ρ(1)ρ(2)E

(1)
m E

(2)
m (U2 − U1)2

ρ(1)E
(1)
m − ρ(2)E

(2)
m

×
[
1− E

(1)
m E

(2)
m (ρ(1) − ρ(2))2

(E(1)
m −E

(2)
m )2ρ(1)ρ(2)

]
> 0. (2.20)

The stability condition (2.20) differs from (2.17)
by the additional last term:

E
(1)
m E

(2)
m (ρ(1) − ρ(2))2/[ρ(1)ρ(2)(E(1)

m − E
(2)
m )2].

Thus the condition (2.20) is valid for infinites-
imal α and when α = 0 the last term is absent.

We now employ multiscale expansion near the
critical wave number. The critical wave number
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is attained when a2 = b2 = 0. The corresponding
critical frequency, ωc is zero for this case.

Introducing ε as a small parameter, we as-
sume the following expansion of the variables:

η =
3∑

n=1

εnηn(θ, z, t0, t1, t2) + O(ε4), (2.21)

φ(j) =
3∑

n=0

εnφ(j)
n (r, θ, z, t0, t1, t2)+O(ε4), (j = 1, 2)

(2.22)
where tn = εnt(n = 0, 1, 2).0 The quantities
appearing in the field equations (2.3) and the
boundary conditions (2.6), (2.11), and (2.13) can
now be expressed in Maclaurin series expansion
around r = R. Then, we use (2.21), and (2.22)
and equate the coefficients of equal power series
in ε to obtain the linear and the successive non-
linear partial differential equations of various or-
ders.

To solve these equations in the neighborhood
of the linear critical wave number kc, because of
the nonlinear effect, we assume that the critical
wave number is shifted to

k = kc + ε2µ.

3. First Order Solutions.

We take

φ
(j)
0 = Ujz. (j = 1, 2)

The first order solutions will reproduce the lin-
ear wave solutions for the critical case and the
solutions of (2.3) subject to boundary conditions
yield

η1 = A(t1, t2)eiϑ + Ā(t1, t2)e−iϑ, (3.1)

φ
(1)
1 =

(
α

ρ(1)
+ ikU1

)
A(t1, t2)E(1)

m (k, r)eiϑ + c.c.,

(3.2)

φ
(2)
1 =

(
α

ρ(2)
+ ikU2

)
A(t1, t2)E(2)

m (k, r)eiϑ + c.c.,

(3.3)
where

E(1)
m (k, r) =

Im(kr)K ′
m(ka)− I ′m(ka)Km(kr)

I ′m(kR)K ′
m(ka)− I ′m(ka)K ′

m(kR)
,

(3.4)

E(2)
m (k, r) =

Im(kr)K ′
m(kb)− I ′m(kb)Km(kr)

I ′m(kR)K ′
m(kb)− I ′m(kb)K ′

m(kR)
,

(3.5)

ϑ = kz + mθ, I ′m(ka) =
∂

∂r
Im(kr)

∣∣
r=a

, etc.

with Im and Km are the modified Bessel func-
tions of the first and second kinds, respectively.

4. Second order solutions.

With the use of the first order solutions , we
obtained the equations for the second order prob-
lem

∇2φ
(j)
2 = 0, (j = 1, 2) (4.1)

and the boundary conditions at r = R.

——————————————————————————————

ρ(j)

{
∂φ

(j)
2

∂r
− ∂η2

∂z
Uj

}
− αη2 =

[
ρ(j)

{
α

ρ(j)
+ iUj

}{
1
R
− 2

(
k2 +

m2

R2

)
E(j)

m

}
+ αα2

]

×A2e2iϑ + ρ(j) ∂A

∂t1
eiϑ + c.c. + 2α

(
1
R

+ α2

)
|A|2, (j = 1, 2) (4.2− 4.3)

ρ(2)U2
∂φ

(2)
2

∂z
− ρ(1)U1

∂φ
(1)
2

∂z
+ σ

(
∂2η2

∂z2
+

1
R2

∂2η2

∂θ2
+

η2

R2

)

= −1
2

{[[
ρ

(
α

ρ
+ ikU

)2{
−1−

(
m2

R2
+ k2

)
E2

m

}
+ 3αUki− 2ρU2k2

]]
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+
σ

R3
(R2k2 + 2− 7m2)

}
A2e2iϑ +

[[
ρ

k

(
α

ρ
+ ikU

)
Em

]]
∂A

∂t1
eiϑ + c.c.

−
{[[

ρ

(
α2

ρ2
+ k2U2

){
−1 + E2

m

(
m2

R2
+ k2

)}]]
+

σ

R3
(R2k2 + m2 − 2)

}
|A|2. (4.4)

The non secularity condition for the existence of the uniformly valid solution is0

∂A

∂t1
= 0. (4.5)

Equations (4.1) to (4.4) furnish the second order solutions:

η2 = −2
(

1
R

+ α2

)
|A|2 + A2A

2e2iϑ + Ā2Ā
2e−2iϑ, (4.6)

φ
(j)
2 = B

(j)
2 A2e2iϑE

(j)
2m(2k, r) + c.c. + b(j)(t0, t1, t2), (j = 1, 2) (4.7)

where

A2 =
1

D(0, 2k, 2m)

{[[
−ρi2kUE2mβ +

ρ

2

{
E2

m

(
m2

R2
+ k2

)
+ 1

}(
α

ρ
+ ikU

)2

+2ρ(kU)2 − i3αkU

]]
+

σ

2R3
(2 + R2k2 − 7m2)

}
, (4.8)

B
(j)
2 = β(j) +

{
α

ρ(j)
+ 2ikUj

}
A2, (4.9)

β(j) =
{

α

ρ(j)
+ ikUj

}{
1
R
− 2E(j)

m

(
m2

R2
+ k2

)}
+

αα2

ρ(j)
, (4.10)

ρ(2) ∂b(2)

∂t0
− ρ(1) ∂b(1)

∂t0
=

{[[
ρ

(
α2

ρ2
+ k2U2

){
1− E2

m(k, R)
(

m2

R2
+ k2

)}]]

− σ

R3

(
k2R2 + m2 − 4− 2Rα2

)}
|A|2, (4.11)

whereE(j)
2m = E

(j)
2m(2k,R).

5. Third order solutions

We examine now the third order problem:

∇2
0φ

(i)
3 = 0. (i = 1, 2) (5.1)

On substituting the values of η1, φ
(i)
1 from (3.1)-(3.3) and η2, φ

(i)
2 from (4.6)-(4.7) into (A.7), we

obtain
φ

(j)
3 = C

(j)
3 E

(j)
2m(k, r)A2Āeiϑ + E(j)(k, r)

∂A

∂t2
eiϑ + c.c., (5.2)

where

C
(j)
3 = −

[{
E

(j)
2m2

(
m2

R2
+ k2

)
− 1

R

}
B

(j)
2 − 2

{
E(j)

m

(
m2

R2
+ k2

)
− 1

R

}(
α

ρ(j)
+ ikUj

)

×
(

1
R

+ α2

)
+

1
2

{
k2 +

2 + m2

R2
− E

(j)
m

R

(
3m2

R2
+ k2

)}(
3α

ρ(j)
+ ikUj

)
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+
(

α

ρ(j)
− ikUj

)(
2m2

R3
E(j)

m − m2

R2
− k2

)
+

α

ρ(j)

{
4α2

(
1
R

+ α2

)
− 3α3

}

−
{(

α

ρ(j)
− ikUj

){
E(j)

m

(
m2

R2
+ k2

)
+

1
R

}
+

2αα2

ρ(j)

}
A2

]
. (j = 1, 2) (5.3)

We substitute the first- and second-order solutions into the third order equation. In order to
avoid nonuniformity of the expansion, we again impose the condition that secular terms vanish.
Then from (A.8), we find0

i
∂D(0, k, m)

∂ω

∂A

∂t2
+

{
2σkcµ +

[[
ρU

(
α

ρ
+ ikU

)
Em

]]
kciµ

}
A + qA2Ā = 0, (5.4)

where

q =
[[

ρ

(
ikUC3Em + A2

(
i
α

ρ
3kU − k2U2

)

+B2

(
α

ρ
− iUk

){
2EmE2m

(
m2

R2
+ k2

)
− 1

}
− i

(
5

2R
+ 2α2

)
kU

(
α

ρ
+ ikU

)

+
3
R

α2

ρ2
−Em

(
m2

R2
+ k2

)
kU

2
i

(
7
α

ρ
+ 5kUi

)
+

m2

R2
E2

m

(
α2

ρ2
+ 3k2U2 − i2

α

ρ
kU

)]]

− σ

R4

{
(2A2R−4−4Rα2)(1−m2)−2A2R(m2+k2R2)− 3

2
(m2+k2R2)2+

1
2
(9m2+k2R2−6)

}
. (5.5)

——————————————————————————————

We rewrite (5.4) as
∂A

∂t2
+ (ã1 + ã2|A|2)A = 0, (5.6)

which can be easily integrated as

|A(t2)|2 = a1r|A0|2 exp(−2a1rt)

×[a1r + a2r|A0|2 − a2r|A0|2 exp(−2a1rt)]−1,
(5.7)

where A0 is the initial amplitude and ajr =
<ãj , (j = 1, 2) .

With a finite initial value |A0|, |A| may be-
come infinite when the denominator in (5.7) van-
ishes. Otherwise, |A| will be asymptotically
bounded. The situation can be summarized as
follows:

(1) a2r > 0; stable.

(i) a1r > 0; |A|2 → 0, as t2 →∞
(ii) a1r < 0; |A|2 → −a1r/a2r, as t2 →∞

(2) If a2r < 0,

(i) a1r < 0 ; unstable.

(ii) a1r > 0, and |A0|2 > −a1r/a2r : unstable.

(iii) a1r > 0, and |A0|2 < −a1r/a2r : stable
and |A|2 → 0 as t2 →∞. Thus, a sufficient con-
dition for stability is a2r > 0, which is due to the
finite amplitude effect. The cylindrical system
is nonlinearly stabile if a1r > 0 and the initial
amplitude is sufficiently small.

6.Viscous asymmetric linear cylindrical
flow

In this section we consider the viscous poten-
tial flow. For the viscous fluid, (2.12) is now
replaced by

ρ(1)(∇ϕ(1) · ∇F )
(

∂F

∂t
+∇ϕ(1) · ∇F

)

= ρ(2)(∇ϕ(2) · ∇F )
(

∂F

∂t
+∇ϕ(2) · ∇F

)

+(p2 − p1 − 2µ2n · ∇ ⊗∇ϕ(2) · n
+2µ1n · ∇ ⊗∇ϕ(1) · n + σ∇ · n)|∇F |2, (6.1)
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where µ1, µ2 are viscosities of fluid ’1’ and ’2’,
respectively and we modify (2.13) accordingly.
The nonlinear analysis for the viscous fluid is
too onerous when the perturbation is asymmet-
ric , we are content here with the linear analysis.
Then linearizing (2.6), (2.11) and (6.1) we have

[[
ρ

(
∂φ

∂r
− ∂η

∂t

)
− ∂η1

∂z
U

)]]
= 0, (6.2)

0

ρ(1)

(
∂φ(1)

∂r
− ∂η

∂t
− ∂η

∂z
U

)
= αη, (6.3)

[[
ρ

(
∂φ

∂t
+

∂φ

∂z
U

)
+ 2µ

∂2φ

∂r2

]]

= −σ

(
∂2η

∂z2
+

η

R2
+

1
r2

∂2η

∂θ2

)
. (6.4)

When the interface is perturbed to η =
A exp[i(kz + mθ−ωt), we recover the first order
solutions (3.1)-(3.3), and the dispersion relation

for the viscous fluid is same as (2.14), however

a0 = ρ(1)E(1)
m − ρ(2)E(2)

m ,

a1 = 2k{ρ(2)E(2)
m U2 − ρ(1)E(1)

m U1},
b1 = α{E(1)

m − E(2)
m }+ 2(µ1E

(1)
t − µ2E

(2)
t ),

a2 = k2{ρ(1)E(1)
m U2

1 − ρ(2)E(2)
m U2

2 }
− σ

R2
(R2k2 + m2 − 1)

−2α

(
µ1

ρ(1)
E

(1)
t − µ2

ρ(2)
E

(2)
t

)
,

b2 = αk{E(2)
m U2 − E(1)

m U1}
−2k(µ1U1E

(1)
t − µ2U2E

(2)
t ),

with

E
(i)
t = E(i)

m

(
k2 +

m2

k2

)
− 1

R
,

and necessary and sufficient stability conditions
are

b1 > 0, (6.5)
and

a0b
2
2 − a1b1b2 + a2b

2
1 < 0, (6.6)

since a0 is always positive.

7. Numerical examples

In this section we do numerical works using the expressions presented in previous sections for the
film boiling conditions. The vapor and liquid are identified with phase 1 and phase 2, respectively,

FIGURE 1. The critical wave number for m=1.
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so that T1 > T0 > T2.

In the film boiling, the liquid-vapor interface is of saturation condition and the temperature T0

is set equal to the saturation temperature. The properties of both phases are determined from this
condition. First, in figure 1 we display critical wave number kc, i.e., the value for which ω = 0 in
(2.14) Here we chose ρ1 = 0.001gm/cm3, ρ2 = 1gm/cm3, σ = 72.3dyne/cm, b = 2cm, a = 1cm,R =
1.2cm, α = 0.1gm/cm3s 0

FIGURE 2. The stability diagram for the flow when m=1. The system is stable in the region
between the two upper and lower curves.

Fig.3.Viscous cylindrical flow for m=0.The region above the curve is stable region.

From this figure we can notice that critical wave number increases as the velocity of fluid increases,
the increment rate of the inviscid fluid being sharper at higher fluid velocities. In figure 2 we display
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the region of stability of fluid in the nonlinear analysis as the velocity of one fluid increases while
that of the other fluid remains unchanged. In these figures , u1 remains constant as 1 cm/sec while
u2 varies from 1 cm/sec to 10cm/sec. The region between the two curves is the region of stability,
while in the region above the upper curve, the fluid is unstable.0

In Fig.3 and Fig.4 we present the results for viscous cylindrical linear flow.Here we chose
ρ1 = 0.0001gm/cm3, ρ2 = 1gm/cm3, σ = 72.3dyne/cm, b = 2cm, a = 1cm,R = 1.2cm, α =
.1gm/cm3s, µ1 = 0.00001poise, µ2 = 0.01poise

Fig.4.Viscous cylindrical flow for m=1.The region above the curve is stable region.

8. Conclusions.

The stability of liquids in a cylindrical flow when there is mass and heat transfer across the
interface which depicts the film boiling is studied. Using the method of multiple time scales, a first
order nonlinear differential equation describing the evolution of nonlinear waves is obtained.With
the linear theory the region of stability is the whole plane above a curve like in Fig.3,4, however
with the nonlinear theory it is in the form of a band as shown in Fig.2. Unlike linear theory,
with nonlinear theory, it is evident that the mass and heat transfer plays an important role in the
stability of fluid, in a situation like film boiling.

Appendix

The interfacial conditions are given on r = R as

Order O(ε)

[[
ρ

(
∂φ1

∂r
− ∂η1

∂T0

)
− ∂η1

∂z

∂φ0

∂z

)]]
= 0, (A.1)

ρ(1)

(
∂φ

(1)
1

∂r
− ∂η1

∂T0
− ∂η1

∂z

∂φ0

∂z

)
= αη1, (A.2)
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[[
ρ

(
∂φ1

∂T0
+

∂φ1

∂z

∂φ0

∂z

)]]
= −σ

(
∂2η1

∂z2
+

η1

R2
+

1
r2

∂2η1

∂θ2

)
. (A.3)

Order O(ε2)0

[[
ρ

(
∂φ2

∂r
+

∂2φ1

∂r2
η1 − ∂η2

∂T0
− ∂η1

∂T1
− ∂η1

∂z

∂φ1

∂z
− 1

r2

∂η1

∂θ

∂φ1

∂θ
− ∂η2

∂z

∂φ0

∂z

)]]
= 0, (A.4)

ρ(1)

(
∂φ

(1)
2

∂r
+

∂2φ
(1)
1

∂r2
η1 − ∂η2

∂T0
− ∂η1

∂T1
− ∂η1

∂z

∂φ
(1)
1

∂z
− 1

r2

∂η1

∂θ

∂φ1

∂θ
− ∂η2

∂z

∂φ0

∂z

)
= α(η2 + α2η

2
1), (A.5)

[[
ρ

{
∂φ2

∂T0
+

∂φ1

∂T1
+

∂2φ1

∂T0∂r
η1 +

1
2

[(
∂φ1

∂r

)2

+
1
r2

(
∂φ1

∂θ

)2

+
(

∂φ1

∂z

)2]
+

∂φ2

∂z

∂φ0

∂z
+

∂φ1

∂r

(
∂η1

∂T0
− ∂φ1

∂r

)

+
∂φ0

∂z

(
− ∂η1

∂z

∂η1

∂t0
+ 2

∂η1

∂z

∂φ1

∂r
−

(
∂η1

∂z

)2 ∂φ0

∂z
+

∂2φ1

∂z∂r
η1

)}]]

= −σ

{
∂2η2

∂z2
+

1
2R

(
∂η1

∂z

)2

+
η2

R2
− η2

1

R3
− 3

2
1

R3

(
∂η1

∂θ

)2

+
1
r2

∂2η2

∂θ2
− 2

r3
η1

∂2η1

∂θ2

}
. (A.6)

Order O(ε3)

ρ(j)

{
∂φ

(j)
3

∂r
+

∂2φ
(j)
2

∂r2
η1 +

∂2φ
(j)
1

∂r2
η2 +

1
2

∂3φ
(j)
1

∂r3
η2
1 −

∂η3

∂T0
− ∂η2

∂T1
− ∂η1

∂T2

−∂η1

∂z

(
∂φ

(j)
2

∂z
+

∂2φ
(j)
1

∂z∂r
η1

)
− ∂η2

∂z

∂φ
(j)
1

∂z
− ∂η3

∂z

∂φ
(j)
0

∂z
− 1

R2

∂η2

∂θ

∂φ
(j)
1

∂θ
− 1

R2

∂η1

∂θ

∂φ
(j)
2

∂θ

− 1
R2

η1
∂η1

∂θ

∂2φ
(j)
1

∂θ∂r
+

2
R3

η1
∂η1

∂θ

∂φ
(j)
1

∂θ

}
= α(η3 + 2α2η1η2 + α3η

3
1), (j = 1, 2), (A.7)

[[
ρ

{
∂φ3

∂T0
+

∂φ2

∂T1
+

∂φ1

∂T2
+

∂2φ1

∂T0∂r
η2 +

(
∂2φ1

∂T1∂r
+

∂2φ2

∂T0∂r

)
η1

+
1
2

∂3φ1

∂T0∂r2
η2
1 +

∂φ1

∂r

(
∂φ2

∂r
+

∂2φ1

∂r2
η1

)
+

∂φ1

∂z

(
∂φ2

∂z
+

∂2φ1

∂r∂z
η1

)

+
1

R2

∂φ1

∂θ

(
∂2φ1

∂r∂θ
− 1

R

∂φ1

∂θ

)
η1 +

1
R2

∂φ1

∂θ

∂φ2

∂θ

−
(

∂φ1

∂r
− ∂η1

∂t0

)(
∂φ2

∂r
− ∂φ1

∂z

∂η1

∂z
− 1

R2

∂φ1

∂θ

∂η1

∂θ

)
+

∂φ1

∂r

(
∂η2

∂t0
+

∂η1

∂t1
− ∂φ2

∂r
+

∂φ1

∂z

∂η1

∂z
+

1
R2

∂φ1

∂θ

∂η1

∂θ

)

+η1
∂2φ1

∂r2

(
∂η1

∂T0
− 2

∂φ1

∂r

)
+

∂φ0

∂z

(
∂φ3

∂z
+

∂2φ1

∂r∂z
η2 +

∂2φ2

∂r∂z
η1 +

∂3φ1

∂r2∂z

η2
1

2

+2
∂φ2

∂r

∂η1

∂z
+ 2

∂φ1

∂r

∂η2

∂z
+ 2

∂2φ1

∂r2

∂η1

∂z
η1 − ∂η2

∂t0

∂η1

∂z
− ∂η1

∂t0

∂η2

∂z

−2
∂η1

∂z

∂η2

∂z

∂φ0

∂z
− 2

(
∂η1

∂z

)2 ∂φ1

∂z
− 2

R2

∂η1

∂z

∂η1

∂θ

∂φ1

∂θ

)}]]
= −σ

[
∂2η3

∂z2
− 3

2
∂2η1

∂z2

(
∂η1

∂z

)2
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−1
2

η1

R2

(
∂η1

∂z

)2

+
1
R

∂η1

∂z

∂η2

∂z
+

η3

R2
− 2η1η2

R3
+

η3
1

R4
− 3

R3

∂η1

∂θ

∂η2

∂θ
− 1

2R2

∂2η1

∂z2

(
∂η1

∂θ

)2

+
9

2R4
η1

(
∂η1

∂θ

)2

+
1

R2

∂2η3

∂θ2
+

1
R2

∂2η1

∂θ2

{
−1

2

(
∂η1

∂z

)2

− 2η2

R
+

3η2
1

R2
− 3

2R2

(
∂η1

∂θ

)2}

− 2
R3

η1
∂2η2

∂θ2
− 2

R2

∂η1

∂θ

∂2η1

∂θ∂z

∂η1

∂z

]
. (A.8)
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