

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Research on Static Rate

M.Tech Scholar

ABSTRACT

Rate-monotonic scheduling (RMS) is a priority
assignment algorithm used in real-time operating
systems (RTOS) Scheduling procedures are a
backbone of any operating system. In previous paper I
analyze and conclude that the rate monotonic
scheduling is best for real time scheduling.
Deterministic deadlines are exactly equal to periods
As I know scheduling procedures are basically
divided into two main streams: first is the
uniprocessor and another one is multiprocessor.

This paper describes the rate monotoni
system. Here I previously studied and analyzed
different SRM and SDM procedures to conclude that
which algorithm or which policy is best for real time
scheduling.

Keywords: Rate-monotonic scheduling (RMS), real
time operating systems (RTOS), Static Deadline
monotonic (SDM), Highest Locker's Priority Protocol
(HLP)

INTRODUCTION

The scheduling of real-time tasks is very different
from general scheduling. Ordinary scheduling
procedures attempt to ensure fairness among tasks,
minimum progress for any individual task, and
prevention of starvation and deadlock. The static
priorities are assigned according to the cycle duration
of the job, so a shorter cycle duration results in a
higher job priority.Within computer science real
systems are an important while often less known
branch. I use Real-time systems in so many ways
today more than PCs in our real life, still I are not so
familiar about it when I use the devices in which they

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

ate Monotonic Real Time Scheduling

Pallavi Ganeshpurkar
ech Scholar, Department of CSE, Kalinga University

Raipur, Chhattisgarh, India

monotonic scheduling (RMS) is a priority
time operating

systems (RTOS) Scheduling procedures are a
backbone of any operating system. In previous paper I
analyze and conclude that the rate monotonic

for real time scheduling.
Deterministic deadlines are exactly equal to periods
As I know scheduling procedures are basically
divided into two main streams: first is the
uniprocessor and another one is multiprocessor.

This paper describes the rate monotonic (SRM)
system. Here I previously studied and analyzed
different SRM and SDM procedures to conclude that
which algorithm or which policy is best for real time

monotonic scheduling (RMS), real-
time operating systems (RTOS), Static Deadline
monotonic (SDM), Highest Locker's Priority Protocol

time tasks is very different
from general scheduling. Ordinary scheduling
procedures attempt to ensure fairness among tasks,
minimum progress for any individual task, and

ntion of starvation and deadlock. The static
priorities are assigned according to the cycle duration
of the job, so a shorter cycle duration results in a
higher job priority.Within computer science real-time
systems are an important while often less known

time systems in so many ways
today more than PCs in our real life, still I are not so
familiar about it when I use the devices in which they

reside. Some of the devices in which real time system
resides are cars, planes and entertainment
which govern the working of those devices which I do
not consider that such system exist within the chosen
device.

Basically I can say that a real
computer based system in which the major aspect of
the system is to perform tasks o
too early nor too late. A classic example is that of the
opening of para suit; it is of great importance that the
para suit must be pulled in time not too soon not too
late in order to land safely while skydiving. One more
example is of the air-bag in a car; it is of great
importance that the bag inflates neither too soon nor
too late in order to be of aid and not be potentially
harmful.

In the previous paper I survey several procedures
developed over the last few years that are d
schedule real-time tasks in distributed systems. The
choice of algorithm can influence the behavior of a
real-time system and for this reason there are many
available procedures. For the different categories of
real- time systems there are speci
developed. With the help of the previous paper I will
finalize that rate monotonic is best for real
procedures.[1]

Before examining the actual procedures, it is helpful
to establish the exact meanings of the terms real
task and distributed system. I provide a basic
definition of what a real-time task is and identify the
different dimensions along which this definition may
vary.Other overviews of real
procedures have been presented by Burns[1], Burns
and Audsley[2] and by Mohammadi and Akl[3].

Jun 2018 Page: 203

www.ijtsrd.com | Volume - 2 | Issue – 4

Scientific
(IJTSRD)

International Open Access Journal

cheduling System

reside. Some of the devices in which real time system
resides are cars, planes and entertainment system
which govern the working of those devices which I do
not consider that such system exist within the chosen

Basically I can say that a real-time-system is a
computer based system in which the major aspect of
the system is to perform tasks on time, not finishing
too early nor too late. A classic example is that of the
opening of para suit; it is of great importance that the
para suit must be pulled in time not too soon not too
late in order to land safely while skydiving. One more

bag in a car; it is of great
importance that the bag inflates neither too soon nor
too late in order to be of aid and not be potentially

In the previous paper I survey several procedures
developed over the last few years that are designed to

time tasks in distributed systems. The
choice of algorithm can influence the behavior of a

time system and for this reason there are many
available procedures. For the different categories of

time systems there are specialized procedures
developed. With the help of the previous paper I will
finalize that rate monotonic is best for real-time

Before examining the actual procedures, it is helpful
to establish the exact meanings of the terms real-time

distributed system. I provide a basic
time task is and identify the

different dimensions along which this definition may
vary.Other overviews of real-time scheduling
procedures have been presented by Burns[1], Burns

] and by Mohammadi and Akl[3].

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 204

Those are somewhat more in depth on some topics
then this overview.

The rest of the paper is organized as follows: - In
section 2 basic concepts of real-time system and
scheduling are explained. Section 3 deals with the rate
monotonic scheduling system in this paper. The final
section, 4 covers summary and conclusions.

REAL TIME SYSTEM

Real-time applications usually are executed on top
of a Real-time Operating System .scheduling
procedures are the rule set that defines that how I
manage the real-time system in the scheduler, that is,
how processor-time is allotted to the task present in
any queue. The choice of algorithm depends on
whether our system base is uniprocessor,
multiprocessor or distributed.

A uniprocessor system executes only one process at
a time and is capable of switching between
processes, due to this reason context switching add
some more time to the overall execution time when I
preempt the process.

Multiprocessing is the use of two or more central
processing units (CPUs) within a single computer
system. A multiprocessor system will range from
multi-core, essentially several uniprocessors in one
processor, to several separate uniprocessors
controlling the same system.

A distributed system will range from a
geographically dispersed system to several
processors on the same board. In a distributed
system the nodes are autonomous while in a

In real-time systems processes are referred to as
tasks and these have certain temporal qualities and
restrictions. First of all a real-time task is a task like
any other. HoIver, there is essential difference to
other computation: the notion of time. Maintaining
the Integrity of the Specifications.

Each of the tasks will have a deadline, an execution
time and a release time. In addition there are other
temporal attributes that may be assigned to a task.
The three mentioned are the basic ones. The release
time, or ready time is when the task is made ready for
execution. The deadline is when a given task must be
done executing and the execution time is how long
time it takes to run the given task. In addition most
tasks are recurring and have a period in which it
executes. Such a task is referred to as periodic. The

period is the time from when a task may start until
when the next instance of the same task may start and
the length of the period of a task is static.

An example, shown in Figure 1, of scheduling can be
made using three tasks T1, T2 and T3 with execution
time and deadline of (1, 3), (4, 9) and (2, 9)
respectively and periods equal to their deadlines.
These tasks can be scheduled so that all tasks get to
execute before the deadlines.

Figure 1: Scheduling of T1, T2 and T3.

The example is very simple as it does not show
priorities or use preemption. There are also other
properties of interest when looking at scheduling.
Properties a task may use briefly explained:

 Release/ready time: The time a task is ready to run
and just waits for the scheduler to activate it.

 Deadline: The time when a task must be finished
executing.

 Execution/run time: The active computation time
a tasks need to complete.

 Worst Case Execution Time (WCET): The longest
possible execution time for a task on a particular
type of system.

 Response time: The time it takes a task to finish
execution. Measured from release time to
execution completes, including preemptions.

 Priority/Iight: The importance given a task in
context of the schedule at hand.

SCHEDULING PROCEDURES

A. STATIC SCHEDULING
Scheduling procedures themselves can be categorized
as being static or dynamic.[4] The static scheduling
procedures are those procedures which come under
uniprocessors. The tasks present here have enough
execution time and are ensured to fulfill the condition
of deadline if possible. It calculates (or pre-
determines) schedules for the system. Static approach
requires prior knowledge of the process
characteristics in order to process it in particular time.
Certainly in safety critical systems it is reasonable to
argue that no event should be unpredicted and that

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 205

schedulability should be guaranteed before execution.
This implies the use of a static scheduling algorithm.
When all the scheduling decisions are made prior to
the running of the system then it is static and offline.
A table is generated which carry the scheduling
decisions which are to be used during run-time.

Rate monotonic (RM) is a scheduling algorithm [5,6]
used in real time operating systems with static
priority preemptive scheme. It is static-priority in the
sense that all priorities are determined for all
instances of tasks before run time. The length of the
period of respective tasks determine the priority of a
task. Tasks with short period times are assigned
higher priority. Periodic tasks are scheduled using
RM. The following are preconditions for the rate
monotonic algorithm formalized by Liu and
Layland.

1. Periodic tasks have constant known execution
times and are ready for execution at the
beginning of each period(T).

2. Deadlines(D) for tasks are at the end of each
period: (D = T)

3. The tasks are independent, that is, there is no
precedence between tasks and they do not block
each other.

4. Scheduling overhead due to context switches
and swapping etc. are assumed to be zero.

The rate monotonic priority assignment is optimal
meaning that if any static priority scheduling
algorithm can meet all the deadlines, then the rate
monotonic algorithm can too. The Utilization For the
given process is obtained by the given formula which
was proposed by Lui & Layland(1973)[8] which is as:

 …….…..(1).

Where Ci=Computation Time, Ti=Release Time
Period, N=No. of processes to be Scheduled.

An Example for rate monotonic is explained as
follows:

TABLE 1: Process Timing

Process Execution
Time

Period

P1 3 7
P2 4 9
P3 6 10

The utilization for the given processes present in table
2 will be solved by the given formula:

The Utilization will be: 3/7 + 4/9 + 6/10 = 0.6492.

With the help of this utilization time I conclude the
feasibility of the algorithm.

Figure 2: Scheduling example of Rate-Monotonic

One more example for RM is shown below which
shows the two different tasks T1 and T2 are shown
with their execution time T1 with a shorter period &
therefore higher priority runs before T2. They then
run as they are release .

Deadline Monotonic is a scheduling algorithm is an
algorithm that uses fixed priority preemptive
scheduling. The tasks in this procedures assigned
according to the deadline of the given processes are
assigned according to the given deadline. The task
having the shortest deadline is assigned with the
highest priority. Each task is assigned a priority
inversely proportional to its relative Deadline.
Deadline monotonic priority assignment is not
optimal for fixed priority non-pre-emptive
scheduling.

An Example that shows the feasibility for deadline
can be shown by the example below:

Figure 3: Scheduling example for deadline
monotonic.

Can I derive utilization based tests with the Given
Formula:

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 206

…………………......(2)

Here Di=Deadline of the task, Ci=Computation
Time, N=no. of process to schedule.

B. RATE-MONOTONIC SCHEDULING:
In computer science, rate-monotonic scheduling
(RMS) is a priority assignment algorithm used in real-
time operating systems (RTOS) with a static-priority
scheduling class. The static priorities are assigned
according to the cycle duration of the job, so a shorter
cycle duration results in a higher job priority. Tasks
are independent in rate monotonic scheduling. The
schedulability constant is given by:

Assume a set of periodic tasks: (Ci,Ti) Di=Ti

Tasks are always released at the start of their periods
and tasks are independent.

It is a mathematical model that contains a calculated
simulation of periods in a closed system, where
round-robin and time-sharing schedulers fail to meet
the scheduling needs otherwise. Rate monotonic
scheduling looks at a run modeling of all threads in
the system and determines how much time is needed
to meet the guarantees for the set of threads in
question.Liu & Layland (1973) proved that for a set
of n periodic tasks with unique periods, a feasible
schedule that will always meet deadlines exists if the
CPU utilization is below a specific bound (depending
on the number of tasks).

Multiprocessor systems are the future as I see it now,
but finding procedures that takes full advantage of
these systems is an arduous task in which much effort
has been and is being made by researchers. Future
work could be to focus on these new procedures being
produced as Ill as dynamic based server procedures.

The basic priority inheritance protocol[7] promotes the
priority of the task that holds the resource to the
priority of the task that requests that resource at the
time the request is made. Upon release of the
resource, the original priority level before the
promotion is restored. This method does not prevent
deadlocks and suffers from chained blocking. That is,
if a high priority task accesses multiple shared
resources in sequence, it may have to wait (block) on
a lower priority task for each of the resources. The
real-time patch to the Linux kernel includes an
implementation of this protocol.

The priority ceiling protocol enhances the basic
priority inheritance protocol by assigning a ceiling
priority to each semaphore, which is the priority of
the highest job that will ever access that semaphore. A
job cannot preempt a lower priority critical section if
its priority is lower than the ceiling priority for that
section. This method prevents deadlocks and bounds
the blocking time to at most the length of one lower
priority critical section. This method can be
suboptimal, in that it can cause unnecessary blocking.
The priority ceiling protocol is available in the
VxWorks real-time kernel. It is also known as Highest
Locker's Priority Protocol (HLP).

Conclusion

As I have studied and analyzed the various procedures
based on static scheduling I discuss about the rate
monotonic and deadline monotonic scheduling are
two procedures which are used for real time task
system which are periodic. In this paper I discuss the
feasibility decision for the given real time tasks when
the system is scheduled using rate monotonic and
deadline monotonic scheduling. The complexity of
both the procedures depends on the number of tasks
and the maximum periods given or on the deadlines of
the given processes. The time complexity for the
particular algorithm depends on the number of task. I
come to a conclusion that the rate monotonic is more
feasible as compared to the deadline monotonic
algorithm as the priorities for rate monotonic are
based on the process timing and for the deadline
monotonic it is based on the deadline of each process
which is preempted if higher priority task comes in
between.

Acknowledgment

I am using this opportunity to express my gratitude to
everyone who supported me in research analysis for
the given topic that is analysis on static real time
scheduling procedures. I express my thank to
Department of Computer science & Engineering.

I also express my warm thanks to project
Incharge/guide Prof. Ms. Snehal Vairagade, Asst.
Professor Department Of Computer Science &
Engineering, Kalinga University, Raipur (C.G.) India
for the guidance, inspiration and constructive
suggestions that helpful me in the preparation and
execution of this project.

References

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 4 | May-Jun 2018 Page: 207

1) Buttazzo, Giorgio (2011), Hard Real Time
Computing Systems: Predictable Scheduling
Algorithms and Applications (Third ed.), New
York, NY: Springer, Burns A.,"Scheduling hard
real-time systems: a review” Software
Engineering sJournal, May 1991.

2) Burns A. and Audsley N., ”REAL-TIME
SYSTEM SCHEDULING” Predicatably
Dependable Computer Systems, Volume 2,
Chapter 2, Part II. or Department of Computer
Science, University of York, UK.

3) Mohammadi A. and Akl S. G., ”Scheduling
Procedures for Real-Time Systems”, Technical
Report No. 2005-499, School of Computing,
Queen’s University Kingston, Ontario Canada
K7L 3N6, July 15, 2005.

4) S.Cheng,J.A.Stankovicand K. Ramamritham,
‘‘SchedulingProcedures forHard RealTime
Systems: ABrief Survey’’,pp.150-173 inHard
Real-Time Systems: Tutorial, ed.

5) Liu C.L. and Layland J.W., ”Scheduling
Procedures for Multiprogramming in a Hard-Real-
Time Environment” Journal of the Association for
Computing Machinery vol. 20, no. 1, pp. 46-61.,
year 1973.

6) Leung J. Y.-T., Whitehead J., ”On the complexity
of ixed priority scheduling of periodic, real-time
tasks”, Performance Evaluation, vol. 2, issue 4,
pages 237-250, December 1982..

7) C.L. Liu and J.W.Layland, ‘‘Scheduling
Proceduresfor Multiprogramming in a Hard.

8) A.K. Mok and M.L. Dertouzos,‘‘Multiprocessor
Scheduling in a Hard Real-Time Environment’’,
inProc. 7th TexasConf.Comput .Syst. (November
1978).

9) Liu, C. L.; Layland, J. (1973), Scheduling
procedures for multiprogramming in a hard
real-time environment, Journal of the ACM 20
(1):46–61, doi:10.1145/321738.3217

