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ABSTRACT 

In this paper we compare different kernel had been developed for support 

vector machine based time series classification. Despite the better presentation 

of Support Vector Machine (SVM) on many concrete classification problems, the 

algorithm is not directly applicable to multi-dimensional routes having different 

measurements. Training support vector machines (SVM) with indefinite kernels 

has just fascinated consideration in the machine learning public. This is 

moderately due to the fact that many similarity functions that arise in practice 

are not symmetric positive semidefinite. In this paper, by spreading the Gaussian 

RBF kernel by Gaussian elastic metric kernel. Gaussian elastic metric kernel is 

extended version of Gaussian RBF. The extended version divided in two ways- 

time wrap distance and its real penalty. Experimental results on 17 datasets, 

time series data sets show that, in terms of classification accuracy, SVM with 

Gaussian elastic metric kernel is much superior to other kernels, and the 

ultramodern similarity measure methods.  In this paper we used the indefinite 

resemblance function or distance directly without any conversion, and, hence, it 

always treats both training and test examples consistently. Finally, it achieves 

the highest accuracy of Gaussian elastic metric kernel among all methods that 

train SVM with kernels i.e. positive semi-definite (PSD) and Non-PSD, with a 

statistically significant evidence while also retaining sparsity of the support 

vector set. 

 

 

KEYWORDS: SVM, PSD, time series; support vector machine; dynamic time 

warping; kernel method 
 

1. INTRODUCTION 

We motivated of kernel algorithm because, Firstly, linearity 

is moderately special, and outside mathematically no model 

of a real system is actually linear. Secondly, detecting linear 

relations has been the focus of much research in statistics, 

soft computing and machine vision for decades and the 

resulting algorithms are well understood, well developed 

and efficient. Naturally, one wants the best of both worlds. 

So, if a problem is non-linear, instead of trying to fit a non-

linear model, one can map the problem from the input space 

to a new (higher-dimensional) space (called the feature 

space) by doing a nonlinear transformation using suitably 

chosen basis functions and then use a linear model in the 

feature space. This is known as the `kernel trick'. The linear 

model in the feature space corresponds to a non-linear 

model in the input space. This approach can be used in both 

classification and deterioration problems. The choice of 

kernel function is crucial for the success of all kernel 

algorithms and its variety of types because the kernel 

establishes preceding knowledge that is available about a 

task.  Accordingly, there is no free dine in kernel choice. 

 

According to Martin Sewell, 2007- term kernel is resulting 

from a word that can be sketched back to c. 1000 and 

originally meant a seed (contained within a fruit) or the  

softer (usually edible) part contained within the hard shell of  

 

a nut or stone-fruit. The former meaning is now superseded. 

It was first used in reckoning when it was defined for 

integral equations in which the kernel is known and the 

other function(s) unknown, but now has several meanings in 

mathematics. The machine learning term kernel trick was 

first used in 1998. 

 

In linear algebra we know that any symmetric matrix K with 

real valued entries can be written in the form  

where     are eigen vectors of K 

that form an orthonormal basis (so we also have ) 

and where D is a diagonal matrix with  being the 

corresponding eigen values. A square matrix A is positive 

semi-definite (PSD) i_ for all vectors c we have 

  . It is well known that a 

matrix is positive semi-definite iff all the eigen values are 

non-negative. 

 

In this paper we check the condition of symmetric positive 

semidefinite with the help of Mercer's Theorem according to 

the Mercer's Theorem: 
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The sample  includes m examples. The 

Kernel (Gram) matrix K is an  matrix including inner 

products between all pairs of examples i.e.,  

is symmetric since   

 

Mercer's Theorem: 

A symmetric function  is a kernel iff for any finite 

sample  the kernel matrix for  is positive semi-definite. 

 

One direction of the theorem is easy: if  is a kernel, and 

 is the kernel matrix with  Then 

 
 

Theorem: 

Consider a finite input space and the 

kernel matrix K over the entire space. If K is positive semi-

definite then   is a kernel function. 

 

Proof: By the linear algebra facts above we can write 

 . 

 

Define a feature mapping into a m-dimensional space where 

the lth bit in feature expansion for the other direction we 

will prove a weaker result. 

Example is . 

The inner product is 

 

 
 

We want to show that 

 
Consider  entry of the matrix . We have 

the following identities where the last one proves the result. 

 
 

 

 

 

 
 

Note that Mercer's theorem allows us to work with a kernel 

function without knowing which feature map it corresponds 

to or its relevance to the learning problem. This has often 

been used in practical applications. 

 

In real-life solicitations, however, many similarity functions 

exist that are either indefinite or for which the Mercer 

condition is difficult to verify. For example, one can 

incorporate the longest common subsequence in defining 

distance between genetic sequences, use BLAST similarity 

score between protein sequences, use set operations such as 

union/intersection in defining similarity between 

transactions, use human-judged similarities between 

concepts and words, use the symmetrized Kullback-Leibler 

divergence between probability distributions, use dynamic 

time warping for time series, or use the refraction distance 

and shape matching distance in computer vision [1,2,3,4]. 

Outspreading SVM to indefinite kernels will greatly expand 

its applicability. Recent work on training SVM with indefinite 

kernels has generally warped into three categories: Positive 

semidefinite (PSD) kernel approximation, non-convex 

optimization (NCO) and learning in Krein spaces (LKS). In 

the first approach, the kernel matrix of training examples is 

altered so that it becomes PSD. The motivation behind such 

approach is to assume that negative eigenvalues are caused 

by noise [5,6]. The concluding approach was introduced by 

Luss and d'Aspremont in 2007 with enhancements in 

training time reported [7,8,9].  All the kernel approximation 

methods above guarantee that the optimization problem 

remains convex during training. During experiment, 

however, the original indefinite kernel function is used. 

Hence, training and test examples are treated 

contradictorily. In addition, such methods are only useful 

when the similarity matrix is approximable by a PSD matrix. 

For other similarity functions such as the sigmoid kernel that 

can occasionally yield a negative semidefinite matrix for 

certain values of its hyper-parameters, the kernel 

approximation approach cannot be utilized. 

 

In the second approach, non-convex optimization methods 

are used. SMO type decomposition might be used in finding a 

local minimum with indefinite similarity functions [10]. 

Haasdonk interprets this as a method of minimizing the 

distance between reduced convex hulls in a pseudo-

Euclidean space [4]. However, because such approach can 

terminate at a local minimum, it does not assurance learning 

[1]. Similar to the previous approach, this method only 

works well if the similarity matrix is nearly PSD. 

 

The next approach that has been proposed in the writings is 

to extend SVM into the Krein spaces, in which a reproducing 

kernel is decomposed into the sum of one positive 

semidefinite kernel and one negative semidefinite kernel 

[11,12]. Instead of minimizing regularized risk, the objective 

function is now stabilized. One fairly recent algorithm that 

has been proposed to solve the stabilization problem is 

called Eigen-decomposition SVM (ESVM) [12]. While this 

algorithm has been shown to outperform all previous 

methods, its primary drawback is that it does not produce 

sparse solutions, hence the entire list  of training examples 

are often needed during prediction. 

 

The main contribution of this paper is to establish both 

theoretically and experimentally that the 1-norm SVM [13], 

which was proposed more than 10 years ago, is a better 

solution for extending SVM to indefinite kernels. More 

specifically, 1-norm SVM can be interpreted as a structural 

risk minimization method that seeks a decision boundary 

with large similarity margin in the original space. It uses a 

linear algebra preparation that remains convex even if the 

kernel matrix is indefinite, and hence can always be solved 

quite efficiently. It uses the indefinite similarity function (or 

distance) directly without any transformation, and, hence, it 

always treats both training and test examples consistently. 

In addition, it achieves the highest accurateness among all  

the methods that train SVM with indefinite  kernels, with a 
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statistically important indication, while also retaining 

sparsity of the support vector set. In the literature, 1-norm 

SVM is often used as an surrounded feature selection 

method, where learning and feature selection are performed 

concurrently [14, 13, 15, 17, 16,18]. It was studied in [13], 

where it was argued that 1-norm SVM has an advantage over 

standard 2-norm SVM when there are redundant noise 

features. To the knowledge of the authors, the advantage of 

using 1-norm SVM in handling indefinite kernels has never 

been established in the writings. 

 

As a state-of-the-art classifier, support vector machine (SVM) 

has also been examined and applied for time series 

classification in two modes. On one hand, combined with 

various feature extraction approaches, SVM can be adopted 

as a plug-in method in addressing time series classification 

problems. On the other hand, by designing appropriate 

kernel functions, SVM can also be performed based on the 

original time series data. Because of the time axis distortion 

problem, classical kernel functions, such as Gaussian RBF 

and polynomial, generally are not suitable for SVM-based 

time series classification. Motivated by the success of 

dynamic time wrapping distance, it has been suggested to 

utilize elastic measure to construct appropriate kernel. 

Gaussian DTW kernel is then proposed for SVM based time 

series classification [19, 20]. Counter-examples, however, 

has been subsequently reported that GDTW kernel usually 

cannot outclass GRBF kernel in the SVM framework. Lei and 

Sun [21] proved that GDTW kernel is not positive definite 

symmetric acceptable by SVM. Experimental results [21, 22] 

also showed that SVM with GDTW kernel cannot outperform 

either SVM with GRBF kernel or nearest neighbor classifier 

with DTW distance. The poor performance of the GDTW 

kernel may be attributed to that DTW is non-metric. 

Motivated by recent progress in elastic measure, Zhang et.al 

propose a new class of elastic kernel it is an allowance to the 

GRBF kernel [23].There are lots of Advantages of kernel and 

its types so some of the types we used in this paper for 

classification [24]: 

� The kernel defines a similarity measure between two 

data points and thus allows one to incorporate prior 

knowledge of the problem domain. 

� Most importantly, the kernel contains all of the 

information about the relative positions of the inputs in 

the feature space and the actual learning algorithm is 

based only on the kernel function and can thus be carried 

out without explicit use of the feature space. The training 

data only enter the algorithm through their entries in the 

kernel matrix (a Gram matrix), and never through their 

individual attributes. Because one never explicitly has to 

evaluate the feature map in the high dimensional feature 

space, the kernel function represents a computational 

shortcut. 

� The number of operations required is not necessarily 

proportional to the number of features. Support vector 

machines is one of the most prevalent classification 

algorithms. It is inspired by deep learning practicalities, 

which make use of the Vapnik-Chervonenkis dimension 

to establish the generalization ability of such clan of 

classifiers [25, 26]. However, SVM has its limitations, 

which motivated development of numerous variants 

including the Distance Weighted Discrimination 

algorithm to deal with the data stacking phenomenon 

observed in large dimensions [27] and second order 

conduit programming techniques for handling uncertain 

or missing values assuming availability of second order 

moments of data [28]. One fundamental limiting factor in 

SVM is the need for positive semidefinite kernels. 

 

2. Methods 

In standard two-class classification problems, we are given a 

set of training data …… , where the input 

 and the output  is bnary. We wish to 

find a classification rule from the training data, so that when 

given a new input we can assign a class  from  to 

it. 

 

To handle this problem, we consider the 1-norm support 

vector machine: 

 
 

 
 

Where a dictionary of basis 

functions, and  is a tuning parameter. The solution is 

denoted as  the fitted model is  

 

 
 

The classification rule is given by . The 1-

norm SVM has been successfully used in classification. We 

argue in this paper that the 1-norm SVM may have some 

advantage over the standard 2-norm SVM, especially when 

there are redundant noise features. To get a good fitted 

model  that performs well on future data, we also need 

to select an appropriate tuning parameter . In practice, 

people usually pre-specify a finite set of values for   that 

covers a wide range, then either use a separate validation 

data set or use cross-validation to select a value for s that 

gives the best performance among the given set. 

 

3. Large similarity margins 

Given a similarity function between 

examples  and  , we can define similarity between an 

example  and a class  to be a weighted sum of 

similarities with all of its examples. In other words, we may 

write: 

  (4) 

 

To denote class similarity between  and a class . 

Here, the weight  represents importance of the example  

to its class . In addition, we can introduce an offset b that 

quantifies prior preference. Such offset plays a role that is 

similar to the prior in Bayesian methods, the activation 

threshold in neural networks, and the offset in SVM. Thus, 

we consider classification using the rule: 

 

y ̂t= sign{s(xt,+1)-s(xt,-1)+b},    (5) 
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Which is identical to the classification rule of 1-norm SVM 

given in Eq 4. Moreover, we define the similarity margin 

for example  in the usual sense: 

 

                 (6) 

 

Maximizing the minimum similarity margin can be 

formulated as a linear program (LP). 

First, we write: 

 

Subject to 

       

 

However, the decision rule given by Eq. (6) does not change 

when we multiply the weights � by any fixed positive 

constant including constants that are arbitrarily large. This is 

because the decision rule only looks into the sign of its 

argument. In particular, we can always rescale the weights � 

to be arbitrarily large, for which  . This degree of 

freedom implies that we need to maximize the ratio  

instead of maximizing M in absolute terms. Here, any norm 

suffices but the 1-norm is preferred because it produces 

sparse solutions and because it gives better accuracy in 

practice. 

 

Since our objective is to maximize the ratio , we can 

fix M = 1 and minimize . In addition, to avoid over-fitting 

outliers or noisy samples and to be able to handle the case of 

non-separable classes, soft-margin constraints are needed as 

well. Hence, 1-norm SVM can be interpreted as a method of 

finding a decision boundary with a large similarity margin in 

the original space. Such interpretation holds regardless of 

whether or not the similarity function is PSD. Thus, we 

expect 1-norm SVM to work well even for indefinite kernels. 

 

Similar to the original SVM, one can interpret 1-norm SVM as 

a method of striking a balance between estimation bias and 

variance. 

 

4. Gaussian Elastic Metric Kernel (GEMK) 

Before the definition of GEMK, we first introduce the GRBF 

kernel, one of the most common kernel functions used in 

SVM classifier. Given two time series x and y with the same 

length n, the GRBF kernel is defined as where σ is the 

standard deviation. 

 
GRBF kernel is a PDS kernel. It can be regard as an 

embedding of Euclidean distance in the form of Gaussian 

function. GRBF kernel requires the time series should have  

 

the same length and cannot handle the problem of time axis 

distortion. If the length of two time series is different, re-

sampling usually is required to normalize them to the same 

length before further processing. Thus SVM with GRBF 

kernel (GRBF-SVM) usually is not suitable for time series 

classification. Motivated by the effectiveness of elastic 

measures in handling the time axis distortion, it is 

interesting to embed elastic distance into SVM-based time 

series classification. Generally, there are two kinds of elastic 

distance. One is non-metric elastic distance measure, e.g. 

DTW, and the other is elastic metric, which is elastic distance 

satisfying the triangle inequality. Recently, DTW, one state-

of-the-art elastic distance, has been proposed to construct 

the GDTW kernel [19, 20]. Subsequent studies, however, 

show that SVM with GDTW kernel cannot consistently 

outperform either GRBF-SVM or 1NN-DTW. 

 

We assume that the poor performance of the GDTW kernel 

may be attributed to that DTW is non-metric, and suggest 

extending GRBF kernel using elastic metrics. Thus, we 

propose a novel class of kernel functions, Gaussian elastic 

metric kernel (GEMK) functions.  

 

5. Experiments and Results 

In this section, we present experimental results of applying 

different SVM to image classification problems, and 

determine its efficiency in handling indefinite similarity 

functions. As shown in last Figure 1, when the similarity 

function is PSD, performance of Gaussian TWED SVM is 

comparable to that of SVM. There are different dataset [1, 

29-35] we used for measuring the performance. When 

running statistical significance tests, we find no statistically 

significant evidence that one method better the other at the 

96.45% confidence level. The 1-norm SVM method achieves 

the highest extrapolative accuracy among all methods that 

learn with indefinite kernels, while also retaining sparsity of 

the support vector set other than GTWED SVM. Using the 

error rate as the performance indicator, we compare the 

classification performance of Gaussian elastic matching 

kernel SVM with other different similarity measure methods, 

including nearest neighbor classifier with Euclidean 

(1NNED), nearest neighbor classifier with DTW (1NN-DTW) 

nearest neighbor classifier with ODTW (1NN-ODTW), 

nearest neighbor classifier with ERP (1NN-ERP) and nearest 

neighbor classifier with OTWED (1NN-OTWED). Table I lists 

the classification error rates of these methods on each data 

set. In our experiments, GRBF-SVM takes the least time 

among all above kernel methods. Because the complexity of 

Euclidean distance in GRBF kernel is O(n), while in GDTW, 

GERP and GTWED, the complexity of DTW, ERP and TWED is 

. Besides, the numbers of support vectors of GERP-

SVM and GTWED GTWED-SVM, which are comparable to 

that of GDTW-SVM, both are more than that of GRBF-SVM. 

Thus, compared with GRBF-SVM, it also takes more time for 

GERP-SVM, GTWED-SVM and GDTW-SVM [23]. 
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Figure1:. COMPARATIVE STUDY USING THE DIFFERENT TIME SERIES DATA SETS: CLASSIFICATION ERROR RATES 

(AVERAGE TEST ERROR RATE RESULTS) OBTAINED USING SIMILARITY MEASURE METHODS AND SVM CLASSIFIERS 

WITH DIFFERENT KERNELS 

 
 

6. Conclusion 

Widespread research determination has been enthusiastic 

recently to training support vector machines (SVM) with 

indefinite kernels. In this paper, we establish theoretically 

and experimentally that a variant of kernels. We Compare 

the Study Using the Different Time Series Data Sets: 

Classification Error Rates (Average Test Error Rate Results) 

Obtained Using Similarity Measure Methods and SVM 

Classifiers with Different Kernels. The 1-norm SVM method 

formulates large-margin separation as a convex linear 

algebra problem without requiring that the kernel matrix be  

 

positive semidefinite. It uses the indefinite similarity 

function directly without any transformation, and, hence, it 

always treats both training and test examples consistently. 

In addition, Gaussian metric kernel methods in the figure 

achieves the highest accuracy among all methods that train 

SVM with kernels, with a statistically significant evidence, 

while also retaining sparsity of the support vector set. This 

important singularity property ensures that the 1-norm SVM 

is able to delete many noise features by estimating their 

coefficients by zero. 
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