
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 3 | Mar-Apr 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD22900 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 955

Cohesive Software Design

Janani Tharmaseelan

Assistant Lecturer, Sri Lanka Institute of Information Technology, Colombo, Sri Lanka

How to cite this paper: Janani

Tharmaseelan "Cohesive Software

Design" Published in International

Journal of Trend in Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-3 , April 2019,

pp.955-957, URL:

https://www.ijtsrd.c

om/papers/ijtsrd22

900.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

This paper presents a natural language processing based automated system

called DrawPlus for generating UML diagrams, user scenarios and test cases

after analyzing the given business requirement specification which is written in

natural language. The DrawPlus is presented for analyzing the natural languages

and extracting the relative and required information from the given business

requirement Specification by the user. Basically user writes the requirements

specifications in simple English and the designed system has conspicuous ability

to analyze the given requirement specification by using some of the core natural

language processing techniques with our own well defined algorithms. After

compound analysis and extraction of associated information, the DrawPlus

system draws use case diagram, User scenarios and system level high level test

case description. The DrawPlus provides the more convenient and reliable way

of generating use case, user scenarios and test cases in a way reducing the time

and cost of software development process while accelerating the 70% of works

in Software design and Testing phase

KEYWORDS: Natural Language Processing; NLP; UML automation; test case

generation; Open NLP; Grammar Algorithm; User Scenario Automation; NLP Co-

reference; Design phase Acceleration; raw requirement analyze; Actor

identification; function identification

I. INTRODUCTION

Software design and software testing is known as some of

the key critical areas in the software development life cycle

which takes considerable amount of time and cost to a

software project. Basically in the software design phase

system analysis are design the software by using various

diagrams (UML) or charts bases on requirement

specification given by the business. In the current process of

designing a software almost every design is done by

manually by utilizing large amount of human effort and can

have some reliability issues with the design.

When it’s come to the testing phase it is the last phase of

SDLC before software is delivered and in this phase software

is test against the requirements. Here generating test cases is

one of the main task and testers face many problems when

generating test cases such as ambiguity in the requirements,

huge time takes to read and understand the requirement

specification etc. By considering the all of those problems we

came up with an integrated software design tool which is

capable of generating use case, user scenarios and Test cases

for the given requirement

Specification in a way accelerate the Design and Test phase

of the SDLC. So that this paper proposes an approach to

generate UML diagrams, user scenarios test case from

software requirements expressed in natural language using

natural language processing techniques. Basically, system

takes and preprocess the requirements specification as the

input, then use NLP core techniques such as sentence

detector, tokenizer, pos (part-of-speech) tagger and de-

tokenizer with our own algorithms to capture and filter only

necessary parts of the given requirement specification.

Finally system produce outputs in three forms such and UML

diagrams, user scenarios and test cases.

II. METHODOLOGY

For the domain of this research has carried out there are

always limited ways of stating a requirement. Hence it’s a

matter of catching each possible ways of stating a

requirement. But increase in the Grammar array may reduce

performance. For each grammar we have defined, there is a

corresponding rule to be applied in order to perform the

actor and function extraction. There for there comes the Rule

set. As a result of this research project, the research team

was able to introduce few new algorithms to be used with

Open NLP libraries. The algorithm is applicable when the

concept of grammar is involved. Grammar is composed of

multiple number of tags with the expected sequence of the

tags.

The algorithm processes one sentence at a time. Initially the

grammar matching algorithm receives a sentence with all the

words are tagged [5] by the POS Tagger [1]. The entire

function is running on top of a nested loop consist of two

nested loops. The algorithm then has three loops inside, each

is nested to the other. Altogether it makes 5 loops nested to

each other and containing more than 13 conditions in

between. The Grammars and Rules are defined and store in a

two dementional array. For each grammar there we have

defined, thers is a coresponding Rule. The rule contains

IJTSRD22900

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22900 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 956

information and instructions to follow when a particular

grammar was hit. The correct rule for a particular grammar

can always be refered by the index number of the grammar.

The Figure 1 shows how the above mentioned loops are

nested and the connection and the purpose of each loop.

Figure 1 - Loop structure

Considering the 3 loops inside the algorithm, the first loop

concerns about the grammar number which is now being

compared, and the second loop concerns about the tokenized

tagged sentence. The tokenized sentence is prepared by

tokenizing the tagged sentence using the Open NLP

Tokenizer [3]. The third and the last loop concerns about

multi valued tags if defined any in the selected grammar.

Multi valued tags are cases where the grammar indicates, in

a particular tag position whether there can be any

alternative tags. This technique is lately added to improve

the efficiency of the algorithm. With the multi-valued check

technique, we were able to reduce more than half of the

grammars and number of rules defined in the method. This

technique also improves the overall efficiency of the entire

process.

Since the first loop concerns about the Grammar rules

number, increment in a single grammar would cause a

massive number of comparisons inside the next two loops.

As an average value for a description with 12 sentences, the

algorithm makes 710 comparisons for 22 grammars defined.

Therefore reduction in the number of grammars effect all

three inside loops directly. The multi-valued tags are

identified by the “/” sign in between two tags in a single tag

position. The efficiency rate is shown below in the Figure 1

and Figure 2. The tests were carried out by testing giving

random sentences as the input for the program. Test 1

contains 12 sentences, test 2 contains 10 sentences and test

3 contains 6 sentences. The test result show that the

technique has an effective and direct impact for the

performance of the overall process. As the decrease in the

grammar resulted in a decrease in number of comparisons,

the total time taken to process the data were also affected

and resulted a decreased. The test results shown in Figure 2

and Figure 3 shows direct and effective outcomes of the

application of the multivalued tag check into the grammar.

Figure 2 - Comparison efficiency

Figure 3 – Duration efficiency

There can be cases where this techniques may not show any

performance, cases where any sentences doesn’t match with

a grammar that does have a multi-valued tag. When finding a

matching grammar, whenever small segments in the

grammar is matched with the segments in the sentence, the

indexes of the matched tokens are saved in a string array to

be used when locating the actions and actors. The Grammars

are stored in a special order. First comes the longest in

length to avoid conflict where one grammar can be consisted

inside another.

Figure 4 - Grammar matching algorithm

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22900 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 957

The Figure 4 shows the wireframe of the Grammar matching

algorithm. The third block of the figure 4 refers to an array

used for a special purpose in this algorithm. The array

simply bridges the sentence and the Rule. Then indicates

where the grammar findings lie inside the original sentence.

The content inside the Rule (last block in figure 4) show

where to look for. The numbers at the first index in each

element refers to the special array in section three. Where

ultimately it is pointed to the indexes of the original

sentence. When a sentence completely matches a grammar,

the matched grammar number in the grammar set is passed

into two algorithms named getActor() and getAction(). The

both algorithms take grammar number as the input and

apply the rules defined specifically for the matched grammar

number which will produce the ultimate result, the actor and

the actions executed by the same actor. The algorithm can

manage advanced relationships between the data.

The algorithms is capable of identifying multiple actors with

their actions mentioned in the same sentence and multiple

actions mentioned to be executed by a particular actor. The

algorithm is further developed to support co-reference in an

advanced manner. When a grammar was hit the mentioned

actor is stored in a variable carries forward till the next actor

gets a hit. Meanwhile if an action is caught without a proper

actor and if the sentence matches the right grammar

requirements, the previous actor that was carried forward

will be patched as the actor. The algorithm is also

maintaining two variables to get statistics of hit counts and

miss counts when matching a grammar. The two count

variables will be resetted each time it is switching between

grammars. This count can be used to prompt the users as an

indication of the confidence level of each segment of the

result.

Since the output of these algorithms can complex as the data

is related to one another, these data cannot be stored in

regular variables available in JAVA [4]. Therefore we have

created a data structure to maintain data, special methods to

retrieve the data or insert new data.

When it comes to the the UML design phase main input is an

XML file which is generated form NLP core. For that a rich

algorithm was implemented. Initial location of diagram is

provided in the first step. The algorithm is executed in this

flow. First actor of the XML is identified and get number of

functions intended for that actor. According to that X, Y

location 1st actor is drown in left side. Then get that actor X

axis value, changing Y axis value and draw the 1st function

from the function set. Define a constant value to put a space

in between two functions. The remaining functions are

drown related to the selected actor by changing X axis value.

Y axis value needs to be changed for all the actor up until left

side allocated space is over. 2nd actor Y alliance is taken by

using this formula .

Whole functions area= number of function count*(function

high + difference)

Next actor location= whole functions area + difference

Another condition is to be checked before draw the actor.

End point for last function for the next actor <= window size.

If this condition is false then that should be draw in left side

else it should be move to opposite side.

To draw arrow in between actors is needed two parameters.

Actor location and the function location are the both location

and actor location is taken by dividing the height of the actor

and function location is taken by getting value of X axis.

When the actor move to opposite side these two parameters

are changed according to that location.

III. CONCLUSION

In this paper, we have presented a structure of modeling use

case diagram, use case scenario and high level test case

description extracted from the given description. We have

introduced an intelligent algorithm to match the grammar of

many different form. The algorithm is smart enough to notify

the user the certainty of the particular piece of findings.

From this algorithm we can identify the relationship of

actors and their functions.

The results shows evidence that improving the algorithm is

much more effective than increasing the number of grammar

to be checked. Which elevated the total performances of the

system. The accuracy can be increased by adding more and

more grammar rules into the application. Therefore we

figured out that each step we take trying to improve the

accuracy the performance of the software reduces. But the

fact is no user is willing to get the chance of having a possible

faulty results over an extra few seconds that they have to

spend more.

Acknowledgment

It gives us immense pleasure and satisfaction in submitting

this research paper. In the endeavor of preparing this paper

many people gave us a helping hand. So it becomes our duty

and pleasure to express our deep regard to them.

References

[1] NLP with JAVA [Online]

http://stackoverflow.com/questions/5836148/how-

to-use-opennlp-with-java

[2] Part-Of-Speech tags [Online]

https://www.ling.upenn.edu/courses/Fall_2003/ling0

01/pen n_treebank_pos.html

[3] Stuart J. Russell and Peter Norving “Artificial

Intelligence A Modern Approach” 1995

[4] Stack overflow [Online] http://stackoverflow.com/

[5] Rob Callan “Artificial Intelligence” 2003

[6] Software Development Life Cycle [Online] Available

http://www.tutorialspoint.com/software_engineering

/softwa re_development_life_cycle.htm

[7] Progtamcreek [Online] Available

http://www.programcreek.com/2012/05/opennlp-

tutorial/

[8] Lawrence R. Rabiner. A tutorial on hidden Markov

models and selected applications in speech recognition.

Proceedings of the IEEE, 1989, pages 257-286

[9] The canonical paper on LDA: David M. Blei, Andrew Y.

Ng, and Michael I. Jordan. Latent Dirichlet Allocation.

Journal of Machine Learning Research, 3:993–1022,

2003

[10] Parsing: Dan Klein and Christopher D. Manning.

Accurate un lexicalized parsing. In ACL, pages 423–430,

2003.

