
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 3 | Mar-Apr 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD23037 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 787

Association Rule Hiding using Hash Tree

Garvit Khurana

School of Computer Science and Engineering Vellore Institute of Technology, Vellore, Tamil Nadu, India

How to cite this paper: Garvit Khurana

"Association Rule Hiding using Hash

Tree" Published in International Journal

of Trend in Scientific Research and

Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-3, April 2019,

pp.787-789, URL:

https://www.ijtsrd.c

om/papers/ijtsrd23

037.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

As extensive chronicles of information contain classified rules that must be

protected before distributed, association rule hiding winds up one of basic

privacy preserving data mining issues. Information sharing between two

associations is ordinary in various application zones for instance business

planning or marketing. Profitable overall patterns can be found from the

incorporated dataset. In any case, some delicate patterns that ought to have been

kept private could likewise be uncovered. Vast disclosure of touchy patterns

could diminish the forceful limit of the information owner. Database outsourcing

is becoming a necessary business approach in the ongoing distributed and

parallel frameworks for incessant things identification.

This paper focuses on introducing a few adjustments to safeguard both customer

and server privacy. Adjustment strategies like hash tree to existing APRIORI

algorithm are recommended that will be helping in safeguarding the accuracy,

utility loss and data privacy and result is generated in small execution time. We

implement the modified algorithm to two custom datasets of different sizes.

KEYWORDS: Association Rule Mining, Modified APRIORI, Frequent Itemset Mining,

Hash Tree

1. INTRODUCTION

Data mining expels novel and profitable learning from broad

files of information and has transformed into an effective

examination and decision strategies in organization. The

sharing of information for data mining can bring a lot of

points of interest for research and business participation; in

any case, tremendous storage facilities of information

contain private information and touchy rules that must be

verified before distributed. Awakened by the various

clashing necessities of information sharing, insurance and

learning discovery, privacy preserving data mining has

transformed into an examination hotspot in data mining and

database security fields.

Two issues are tended to in privacy preserving data mining,

one is the security of private information; another is the

confirmation of sensitive rules (learning) contained in the

information. The past settles how to get normal mining

results when private information can't be gotten to

precisely; the last settles how to guarantee delicate rules

contained in the information from being found, while non-

touchy principles can at present be mined routinely. The last

issue is called information hiding in database in which is

inverse to learning discovery in database. Emphatically, the

issue of learning discovery can be portrayed as seeks after.

2. RELATED WORK

Data mining is the one of the critical thinking method takes

care of numerous business arranged issues, all things

considered, among association rule mining is one of the vital

viewpoints for learning discovery. R. AGARWAL spoke to

interested association rules among the diverse datasets.

Mining successive patterns is a principal part in mining

distinctive thing sets in database applications, for example,

consecutive patterns and mining association rules and so on.

According to specialist Sergey Brian ETAL suggested a

dynamic item set counting (DIC) using APRIORI calculation

to assembled extensive thing set and makes its subset

likewise vast so it will increase memory and time

complexity. All calculations proposed before are retrieving

regular thing sets continuously using association rule mining

with APRIORI calculations. Each dimension all subsets of

incessant example are additionally recovered every now and

again. By these calculations substantial successive patterns

with candidate keys are generated. By the prior frameworks

we have to filter the database continuously, consequently

proficiency of mining is additionally diminished. Because of

these deterrents, an analyst JIAWEI HAN proposed a

calculation without generating a candidate key, by scanning

the database less times, we are going to create a FP-

development calculation to increase productivity contrasted

with past calculations of association rule mining using

APRIORI calculation. By avoiding the candidate age process

and less ignores the database, FP-Tree establishes to be

quicker than the APRIORI calculation. The disadvantages of

using FP-mining are mining finished thing sets for which if

there is an expansive incessant item sets with size X subset,

nearly 2X subset of thing sets are generated consequently.

Anyway to producing a huge number of contingent FP-trees

IJTSRD23037

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23037 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 788

in mining the proficiency of association rule mining using

FP-development is having disadvantages. In this paper we

propose a hash-tree based calculation.

3. PROBLEM DEFINITION

To design and implement hash tree APRIORI algorithms in

order to reduce time and memory complexity of execution

and solve the integrity and security issues in distributed

data.

4. PROPOSED ALGORITHM

Rule for an Efficiency Improvement

We can improve the efficiency of the APRIORI by:

1. Prune all k-1 subsets without checking it.

2. Join L k-1 subsets without looping over the entire set.

3. Speeding up matching & searching

4. Reducing the total number of transactions

5. Reducing the number of passes on data.

6. Reducing the number of subsets per transaction that are

to be be considered.

7. Reducing number of candidates for frequent item set

generation.

This can be done by using hash trees.

This algorithm was implemented on a Python environment

with Intel 2.9 GHz Intel Core i5 processor.

The performance of the rules generated is analyzed using

support and confidence.

We need support because if we use confidence only some of

the rules might produce by chance. So support helps us to

find item set that people seldom buy together so that we can

generate association rules out of them. Confidence provides

reliability of the inference that can be derived by the rule.

Higher the confidence, higher its likely it is for Y to be

present in the transactions that contain X.

Total possible rules:

3^d - 2^ (d + 1) + 1

X -> Y only depends upon the support of (xUy)

If support of (x U y) is less than all the 2*(|x| + |y| - 1)

rules generated will waste computing power.

So problem is divided into two parts:

1. Frequent item set generation

2. Rule generation

Frequent Item set generation:

O (N*M*w)

Where, N is transactions, M is item set, w is max width of

item set.

So two ways:

1. Reduce M

2. Reduce number of comparisons for finding support.

The APRIORI principle:

If an item set is frequent them all of its subsets must be

frequent.

Conversely if item set is infrequent then all of its supersets

are infrequent.

Support based pruning: Trimming exponential search

space based on support measure.

Candidate generation and pruning:

� Candidates -> Ck is set of all possible candidates.

� Fk is set of frequent candidates:

Here after APRIORI we use Hash Tree so that candidate item

sets are partitioned into different buckets and stored in hash

tree.

During support counting, item sets contained in each

transaction are also hashed into appropriate buckets. That

way instead of comparing each transaction with every

candidate item set, it is matched only against candidate item

set that belong to the same bucket.

This indeed helps in reducing time as well as provides

security to the data

5. RESULTS AND DISCUSSION

For implementing the Modified APRIORI Algorithm, we used

two custom datasets of different sizes.

The small dataset consisted of 1000*9 random integer dataset

with missing values.

The larger dataset consisted of 852433*3 random integer

dataset without missing values.

Dataset

Time Taken by

APRIORI

Algorithm

Time Taken by

Modified APRIORI

Algorithm

Small 0.831753969193 0.0556449890137

Large 39.800085783 6.41527199745

After implementing the algorithm in Python and comparing

the results with Original Unmodified APRIORI Algorithm we

see that APRIORI Algorithm with hast tree works much

faster for datasets than the original one.

Hence by using the modified APRIORI algorithm using hash

tree we can improve not only the security of the data but

also the overall efficiency.

6. CONCLUSION

We see that computational complexity depends upon:

1. Threshold Support: Size of C increases.

2. Number of items: Size of both C, F may increase,

requires more space and IO cost will increase

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23037 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 789

3. Number of transactions: Since APRIORI makes use

number of passes on database

4. Average width of transactions: Increases hash tree

traversals during support count phase.

5. Generation of frequent 1 item sets: O (N*w) where w is

average width

6. Candidate generation:

7. Support counting:

O (N*sum (k*wCk*alpha))

Each transaction generates Ck item sets of size K and each of

which requires K steps to go down the hash tree and alpha is

the cost associated with updating count of candidate inside

bucket.

REFERENCES

[1] J. Han, M. Kamber, “Data Mining Concepts and

Techniques”, Morgan Kaufmann Publishers, San

Francisco, USA, 2001, ISBN 1558604898.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules,” In Proc. of VLDB ’94, pp. 487-499,

Santiago, Chile, Sept. 1994.

[3] J. Vaidya& C. Clifton, “Privacy preserving association

rule mining in vertically partitioned data,” In proc. Conf.

Knowledge Discovery and Data Mining, pp. 639–644,

July 2002.

[4] Komal shah, Amitthakkar & Amitganatra, “Association

Rule Hiding by Heuristic Approach to Reduce Side

Effects & Hide Multiple R.H.S. Items” International

Journal of Computer Applications (0975 – 8887) Volume

45– No.1, May 2012.

[5] A. B. M Rezbaul Islam, Tae-Sun Chung "An Improved

Pattern Tree Based Association Rule Mining Technique"

IEEE International Conference on Information Science

and Applications (ICISA), 201 I.

[6] Qihua Lan, Defu Zhang, Bo Wo, "A new algorithm for

frequent item set mining based on APRIORI and FP-

tree", Global Congress on Intelligent System 2009

[7] Bodon, F. 2005. A trie-based APRIORI implementation

for mining frequent item sequences. In Proceedings 1st

international workshop on open source data mining:

frequent pattern mining implementations, ACM.

[8] Bodon, F. and Schmidt-Thieme, L. 2005. The relation of

closed item set mining, complete pruning strategies and

item ordering in APRIORI-based fim algorithms. In

Knowledge Discovery in Databases: PKDD, Springer

Berlin Heidelberg, 437-444.

