
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 3 | Mar-Apr 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD22947 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 704

Implementation of Computational

Algorithms using Parallel Programming

Youssef Bassil

Researcher, LACSC – Lebanese Association for Computational Sciences, Beirut, Lebanon

How to cite this paper: Youssef Bassil

"Implementation of Computational

Algorithms using Parallel Programming"

Published in International Journal of

Trend in Scientific Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-3 | Issue-3 ,

April 2019, pp.704-

710, URL:

http://www.ijtsrd.co

m/papers/ijtsrd2294

7.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

Parallel computing is a type of computation in which many processing are

performed concurrently often by dividing large problems into smaller ones that

execute independently of each other. There are several different types of parallel

computing. The first one is the shared memory architecture which harnesses the

power of multiple processors and multiple cores on a single machine and uses

threads of programs and shared memory to exchange data. The second type of

parallel computing is the distributed architecture which harnesses the power of

multiple machines in a networked environment and uses message passing to

communicate processes actions to one another. This paper implements several

computational algorithms using parallel programming techniques namely

distributed message passing. The algorithms are Mandelbrot set, Bucket Sort,

Monte Carlo, Grayscale Image Transformation, Array Summation, and Insertion

Sort algorithms. All these algorithms are to be implemented using C#.NET and

tested in a parallel environment using the MPI.NET SDK and the DeinoMPI API.

Experiments conducted showed that the proposed parallel algorithms have

faster execution time than their sequential counterparts. As future work, the

proposed algorithms are to be redesigned to operate on shared memory multi-

processor and multi-core architectures.

KEYWORDS: Parallel Computing, Distributed Algorithms, Message Passing

I. MANDELBROT SET ALGORITHM

The Mandelbrot set is a set of points in the complex

plane, the boundary of which forms a fractal.

Mathematically, the Mandelbrot set can be defined as

the set of complex c-values for which the orbit of 0

under iteration of the complex quadratic polynomial

xn+1=xn
2 + c remains bounded [1].

We have designed our parallel algorithm based on

generic static assignment approach where each node

in a cluster is responsible for a pre-defined set of

points. The master will identify the number of

available slaves and assign a number of points or

pixels to each active slave. Each slave then will apply

the Mandelbrot algorithm to decide whether or not a

particular pixel belongs to the set. Ultimately results

will be collected by the master node which will

display graphically the set of pixels. The execution

time of the parallel algorithm is recorded and

reported by the master node.

A. Implementation & Experiments

The proposed algorithm is implemented under MS

Visual C# 2015 and the MS .NET Framework 3.5 [2].

The message passing interface used is the proprietary

MPI.NET SDK [3]. As a testing platform, a single

computer has been used with Intel Core Dual Core

1.66Ghz CPU and 512MB of DDR2 RAM. Table 1

delineates the results obtained

Table 1: Mandelbrot Testing Results

Number of

iterations
20000

Sequential

execution time
18s 578ms

Parallel

execution time
8s 78ms

Speedup

factor
ts / tp = 18578/8078 = 2.3

Figure 1 shows the execution of the Mandelbrot set

program over 2 cores. The master drew the pixels in

purple while the slave drew it in red.

Figure 1: Mandelbrot Program

IJTSRD22947

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22947 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 705

B. Source Code

private void Start()
{

int width = 640, height = 480;
double complexReal, complexImag;
double MIN_REAL = -2; // FIXED
double MAX_REAL = 2; // FIXED
double MIN_IMAG = -2; // FIXED
double MAX_IMAG = 2; // FIXED

Bitmap bitmap1 = new Bitmap(width, height);

DateTime t1 = DateTime.Now; // Start time

string[] args = null;
using (new MPI.Environment(ref args))
{

Communicator comm = Communicator.world;

int region = height/num_proc ;

if (comm.Rank == 0) // MASTER
{

for (int i=0 , z=1 ; z<num_proc; i=i+region+1 , z++)

{
comm.Send(i , z, 0); // send the height_From to

RANK z with TAG 0

comm.Send(i+region , z, 1); // send the

height_To to RANK z with TAG 1
}
for (int x = 0; x < width; x++) // x = x co-ordinate

of pixel
{

for (int y = 0; y < height / 2; y++) // y = y co-

ordinate of pixel
{

complexReal = MIN_REAL + x * (MAX_REAL -

MIN_REAL) / width;
complexImag = MIN_IMAG + y * (MAX_IMAG -

MIN_IMAG) / height;

int iteration = cal_pixel(complexReal,

complexImag);
if (iteration == max_iteration)

bitmap1.SetPixel(x, y, Color.BlueViolet);
else bitmap1.SetPixel(x, y, Color.Black);

}
}

Bitmap bitmap2 = comm.Receive<Bitmap>(1, 1);

DateTime t2 = DateTime.Now; // Stop time
TimeSpan duration = t2 - t1;
timeLabel.Text = "Time: " + duration.Seconds +

"s " +

duration.Milliseconds + "ms";

// Display the MandelBrot Set
pictureBox1.BackgroundImage =

(Image)bitmap1;
pictureBox2.BackgroundImage =

(Image)bitmap2;
}
else // ANY SLAVE
{

int height_From = comm.Receive<int>(0, 0);

int height_To = comm.Receive<int>(0, 1);

Bitmap bitmap2 = new Bitmap(width, height);

for (int x = 0; x < width; x++) // x = x co-ordinate

of pixel

{
for (int y = height_From; y < height_To; y++)
{

complexReal = MIN_REAL + x * (MAX_REAL -

MIN_REAL) / width;
complexImag = MIN_IMAG + y * (MAX_IMAG

- MIN_IMAG) / height;

int iteration = cal_pixel(complexReal,

complexImag);

if (iteration == max_iteration)
bitmap2.SetPixel(x, y, Color.Red);

else bitmap2.SetPixel(x, y, Color.Black);
}

}

comm.Send(bitmap2, 0, 1); // send the bitmap to

RANK 0 with TAG 1
}

}// end of USING Statement
}

private int cal_pixel(double complexReal, double

complexImag)

{
double lengthsq, temp;
double real = 0, imag = 0; // Always Initial Values

int iteration = 0;
do
{

temp = (real * real) - (imag * imag) + complexReal;
imag = 2 * real * imag + complexImag; // Fixed

Formula

real = temp;
lengthsq = real * real + imag * imag; // Fixed

Formula

iteration++;
}
while ((lengthsq < 4.0) && (iteration <

max_iteration));

return iteration;

}

II. BUCKET SORT ALGORITHM

Bucket sort, or bin sort, is a sorting algorithm that

works by partitioning an array into a number of

buckets. Each bucket is then sorted individually,

either using a different sorting algorithm, or by

recursively applying the bucket sorting algorithm [4].

The proposed parallel algorithm is primary based on

a binary approach. The MSB (Most Significant Bit) of

each randomly generated number will indicate the

allocation bucket. Upon end, each bucket is sorted

apart using the Bubble sort algorithm. As for the

parallel design, each slave node will be responsible

for one bucket to sort. In case of having the number of

slaves less than the number of buckets, each slave will

then handle more than one bucket at the same time.

Eventually, the master node displays the results as a

single sorted list of digits. The execution time of the

proposed parallel algorithm is recorded and reported

by the master node.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22947 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 706

A. Implementation & Experiments

The proposed algorithm is implemented under MS

Visual C# 2015 and the MS .NET Framework 3.5. The

message passing interface used is the proprietary

MPI.NET SDK. As a testing platform, a single computer

has been used with Intel Core Dual Core 1.66Ghz CPU

and 512MB of DDR2 RAM. Table 2 delineates the

results obtained

Table 2: Bucket Sort Testing Results

Number of

iterations
30000

Sequential

execution time
10s 437ms

Parallel

execution time
3s 875ms

Speedup factor ts / tp = 10437/3875 = 2.7

B. Source Code

private void Start()
{

// Generate Random Numbers to SORT

Random rand = new Random();

int[] list = new int[30000];

for (int i = 0; i < list.Length; i++)
list[i] = rand.Next(0, 255);

BucketSort(list);
}

public void BucketSort(int[] list)
{

ArrayList[] buckets = new ArrayList[8];// 8 buckets -->

requires 3-bits

for (int i = 0; i < buckets.Length; i++)
{

buckets[i] = new ArrayList(); // create object

buckets
}

DateTime t1 = DateTime.Now; // Start Time

for (int i = 0; i < list.Length; i++)
{

string number = ConvertToBinary(list[i]);

string MSB = number.Substring(0, 3); // taking the

3 MSBs

int integer = ConvertToDecimal(MSB);

buckets[integer].Add(list[i]); // add number to the

corresponding bucket
}

// Update GUI Labels with numbers

for (int i = 0; i < buckets[6].Count - 1; i++)
label7.Text = label7.Text + buckets[6][i].ToString()

+ ", ";

for (int i = 0; i < buckets[7].Count - 1; i++)
label8.Text = label8.Text + buckets[7][i].ToString()

+ ", ";

// At this point all BUCKETS are filled with numbers

string[] args = null;
using (new MPI.Environment(ref args))

{
Communicator comm = Communicator.world;

if (comm.Rank == 0) // MASTER
{

this.Text = "MASTER"; // Set TitleBar

string sortedList = "";

// send the the first 4 buckets to the slave
for (int i = 0; i < 4; i++)

comm.Send(buckets[i], 1, i); // send to RANK 1

with TAG i+1

// SORT bucket #5 to bucket #8
for (int i = 4; i < buckets.Length; i++)

sortedList = sortedList +

BubbleSort(buckets[i]);

outputTextbox.Text = comm.Receive<string>(1,

5) + sortedList;

DateTime t2 = DateTime.Now; // Stop Time
TimeSpan duration = t2 - t1;
timeLabel.Text = "Time: " + duration.Seconds +

"s " +

duration.Milliseconds + "ms";
}
else // SLAVE
{

this.Text = "SLAVE"; // Set TitleBar

string sortedList = "";

ArrayList[] buckets_SLAVE = new ArrayList[4];

for (int i = 0; i < buckets_SLAVE.Length; i++)
{

buckets_SLAVE[i] =

comm.Receive<ArrayList>(0, i);

sortedList = sortedList +

BubbleSort(buckets_SLAVE[i]);
}

comm.Send(sortedList, 0, 5);
}

} // end of USING statement

}

private string BubbleSort(ArrayList bucket)
{

// Bubble Sort

// converting ArrayList object to a regular int array
int[] array = new int[bucket.Count];
for (int i = 0; i < bucket.Count; i++)

array[i] = Convert.ToInt32(bucket[i].ToString());

int temp;
for (int i = 0; i < array.Length; i++)
{

for (int j = 0; j < array.Length; j++)
{

if (array[i] < array[j])
{

temp = array[i];
array[i] = array[j];
array[j] = temp;

}
}

}

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22947 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 707

// Displaying the sorted numbers
string sortedList = "";
for (int i = 0; i < array.Length; i++)

sortedList = sortedList + array[i] + ", ";

return sortedList;
}

III. MONTE CARLO ALGORITHM

The Monte Carlo is a computational algorithm that

relies on repeated random sampling to compute its

results [5]. Monte Carlo methods are often used when

simulating physical and mathematical systems.

Because of their reliance on repeated computation

and random or pseudo-random numbers, Monte

Carlo methods are most suited to calculation by a

computer. In this problem, we are using the Monte

Carlo method to estimate to value of Pi.

The proposed algorithm is mainly a parallel

implementation of the renowned Monte Carlo

problem. Since there are a maximum number of

iterations after which the algorithm should stop, it is

natural to partition the number of iterations per

singular nodes. In this sense, each node including the

master node will be responsible for a specific number

of iterations less than the total maximum of

iterations. Finally, the master will collect back the

results and display the final value of Pi.

A. Implementation & Experiments

The proposed algorithm is implemented under MS

Visual C# 2015 and the MS .NET Framework 3.5. The

message passing interface used is the proprietary

MPI.NET SDK. As a testing platform, a single computer

has been used with Intel Core Dual Core 1.66Ghz CPU

and 512MB of DDR2 RAM. Table 3 delineates the

results obtained.

Table 3: Bucket Sort Testing Results

Number of

iterations
50000000

Sequential

execution time
7s 359ms

Parallel

execution time
3s 890ms

Speedup

factor
ts / tp = 7359/3890 = 1.9

B. Source Code

private void Start()
{

Random rand = new Random();

string[] args = null;
using (new MPI.Environment(ref args))
{

Communicator comm = Communicator.world;
if (comm.Rank == 0) // MASTER
{

this.Text = "MASTER";
DateTime t1 = DateTime.Now; // Start Time

comm.Send(max_iterations, 1, 0); // To RANK 1

with TAG 0

double x, y, z, PI;
int count = 0;

for (int i = 0; i < max_iterations/2; i++)
{

x = (double)rand.Next(32767) / 32767;
y = (double)rand.Next(32767) / 32767;
z = x * x + y * y;
if (z <= 1) count++;

}

int countREC = comm.Receive<int>(1, 1); // From

RANK 1 with TAG 1

PI = (double)(count+countREC) / max_iterations *

4;

PILabel.Text = "Pi = " + PI;

DateTime t2 = DateTime.Now; // Stop Time
TimeSpan duration = t2 - t1;
timeLabel.Text = "Time: " + duration.Seconds + "s "

+

 duration.Milliseconds + "ms"

;
}
else // SLAVE
{

this.Text = "SLAVE";

int max_iterationsREC = comm.Receive<int>(0, 0);

double x, y, z, PI;
int count = 0;
for (int i = max_iterationsREC / 2; i <

max_iterationsREC; i++)
{

x = (double)rand.Next(32767) / 32767;
y = (double)rand.Next(32767) / 32767;
z = x * x + y * y;
if (z <= 1) count++;

}

comm.Send(count, 0, 1); // To RANK 0 with TAG 1
}

}// end of using STATEMENT
}

IV. GRAYSCALE IMAGE TRANSFORMATION

Digital Image Transformations are a fundamental part

of computer graphics. Transformations are used to

scale objects, to shape objects, and to position objects

[6]. In this problem, we are converting a 24-bit

colored image into an 8-bit grayscale image.

The proposed parallel algorithm will embarrassingly

assign different regions of the picture to each of the

available and active nodes. Each node will work on its

dedicated part then the transformed pixels are sent

back to the master node. The master node eventually

displays the complete transformed image.

A. Implementation

The proposed algorithm is implemented under MS

Visual C# 2015 and the MS .NET Framework 3.5. The

message passing interface used is the proprietary

MPI.NET SDK. As a testing platform, a single computer

has been used with Intel Core Dual Core 1.66Ghz CPU

and 512MB of DDR2 RAM. Table 4 delineates the

results obtained

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22947 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 708

Table 4: Image Transformation Testing Results

Image size 698x475 pixels

Sequential execution time 0s 953ms

Parallel execution time 0s 718ms

Speedup factor ts / tp = 953/718 = 1.3

Figure 2 depicts two transformed regions of the same

image. The master nodes handled the left part; while,

the slave nodes handled the right part.

Figure 2: Grayscale Image Transformation Program

B. Source Code

private void Start()
{

DateTime t1 = DateTime.Now; // Start time

string[] args = null;
using (new MPI.Environment(ref args))
{

Communicator comm = Communicator.world;
if (comm.Rank == 0) // MASTER
{

Bitmap bitmap1 = new Bitmap(pictureBox1.Image,

pictureBox1.Width, pictureBox1.Height);

comm.Send(pictureBox1.Width / 2, 1, 0); // send to

RANK 1 with TAG 0

for (int y = 0; y < bitmap1.Height; y++)
{

for (int x = 0; x < bitmap1.Width / 2; x++)
{

Color c = bitmap1.GetPixel(x, y);

//Formula: grayPixel = 0.3*RED + 0.59*GREEN

+ 0.11*BLUE
int grayPixel = (int)(c.R * 0.3 + c.G * 0.59 + c.B *

0.11);

bitmap1.SetPixel(x, y,

Color.FromArgb(grayPixel, grayPixel,

grayPixel));
}

}

pictureBox1.Image = (Image)bitmap1;

DateTime t2 = DateTime.Now; // Stop time
TimeSpan duration = t2 - t1;
timeLabel.Text = "Time: " + duration.Seconds + "s "

+

 duration.Milliseconds + "ms";
}
else // SLAVE
{

int width_Rec = comm.Receive<int>(0, 0);
Bitmap bitmap2 = new Bitmap(pictureBox1.Image,

pictureBox1.Width, pictureBox1.Height);

for (int y = 0; y < bitmap2.Height; y++)

{
for (int x = width_Rec; x < bitmap2.Width; x++)
{

Color c = bitmap2.GetPixel(x, y);

//Formula: grayPixel = 0.3*RED +

0.59*GREEN + 0.11*BLUE
int grayPixel = (int)(c.R * 0.3 + c.G * 0.59 + c.B

* 0.11);

bitmap2.SetPixel(x, y,

Color.FromArgb(grayPixel, grayPixel,

grayPixel));
}

}

pictureBox1.Image = (Image)bitmap2;
}

}

V. ARRAY SUMMATION

The problem of array summation is to add together

5,000,000 numbers contained in a one-dimensional

array [7]. The master node would broadcast the

content of the initial array to all the available slaves.

Each slave would then add together each two

contagious integers and send the partial sum back to

the master node. After long run, the master node adds

all those accumulated partial sums to get a final

result.

A. Implementation

The proposed algorithm is implemented under MS

Visual C++ 6.0 [8]. The message passing interface

used is the proprietary MPI 2.0 standard DeinoMPI

[9]. As a testing platform, two computers connected

by a 100Mbps Ethernet have been used with Intel

Core Dual Core 1.66Ghz CPU and 512MB of DDR2

RAM. Table 5 delineates the results obtained

Table 5: Pixel Summation Testing Results

Number to add 5000000

Sequential

execution time
1s 798ms

Parallel

execution time
0s 323ms

Speedup factor ts / tp = 1798/323 = 5.56

B. Source Code

void main(int argc, char* argv[])
{

int my_rank; // Holds my rank: 0 for master and other

numbers for slaves
int num_proc; // Holds the number of processors

available

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_proc);

int partition_size = 5000000/num_proc ; // Partition

Numbers among processes

if (my_rank == 0) // MASTER
{

int data[5000000] = ;

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22947 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 709

for(int i=0 ; i<50000 ; i++)

data[i] = i ;

clock_t t1 = clock();

MPI_Bcast(data , 50000 , MPI_INT , 0 ,

MPI_COMM_WORLD) ;

int sum=0 , partial_sum=0 , sumREC=0;

for(int k=0 ; k<partition_size ; k++)
partial_sum = partial_sum + data[k] ;

for(int i=1 ; i<num_proc ; i++)
{

MPI_Recv(&sumREC , 1 , MPI_INT , i , 0 ,

MPI_COMM_WORLD , &status);

sum = partial_sum + sumREC ;
}

clock_t t2 = clock();

cout<<"Sum = "<<sum<<"\n" ;
cout<<"\nTime elapsed: "<<(double)t2 - t1<<" ms";

 }
 else // SLAVE
 {

int data[50000000] ;

MPI_Bcast(data , 5000000 , MPI_INT , 0 ,

MPI_COMM_WORLD) ;

int partial_sum ;

for(int i=partition_size ; i<5000000 ; i++)
partial_sum = partial_sum + data[i] ;

MPI_Send(&partial_sum , 1 , MPI_INT , my_rank , 0 ,

MPI_COMM_WORLD);
 }

}

VI. INSERTION SORT ALGORITHM

Insertion sort is a simple sorting algorithm, it is a

comparison sort in which the sorted array is built one

entry at a time. In abstract terms, every iteration

removes an element from the input data, inserting it

at the correct position in the already sorted list, until

no elements are left in the input [10].

In the proposed parallel algorithm, the master node

will send the 1st input to slave node P, P will then

check if the received number is smaller than a max

value, if yes, it will send it to Pi+1, otherwise; it will

send the max to Pi+1 and assign max a new value that

is the number received. The algorithm is repeated

until the whole list is sorted

A. Implementation

The proposed algorithm is implemented under MS

Visual C++ 6.0. The message passing interface used is

the proprietary MPI 2.0 standard DeinoMPI. As a

testing platform, two computers connected by a

100Mbps Ethernet have been used with Intel Core

Dual Core 1.66Ghz CPU and 512MB of DDR2 RAM.

Table 6 delineates the results obtained

Table 6: Parallel Insertion Sort Testing Results

Number to

sort
500

Sequential

execution time
2s 203ms

Parallel

execution time
1s 102ms

Speedup factor ts / tp = 2203/1102 = 1.99

B. Source Code

void main(int argc, char* argv[])
{

int my_rank; // Holds my rank: 0 for master and other

numbers for slaves
int num_proc; // Holds the number of processors

available

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &num_proc);

int max=-1 ;

if (my_rank == 0) // MASTER
{

int data[500] = ; // List to sort

for(int j=0 ; j<500 ; j++)

data[j] = (int)rand() ;

clock_t t1 = clock();

for(int i=0 ; i<500 ; i++)
{

MPI_Send(&data[i] , 1 , MPI_INT , my_rank+1 , 0);

}

clock_t t2 = clock();

cout<<"\nTime elapsed: "<<(double)t2 - t1<<" ms";
 }
 else // SLAVE
 {

int number;

MPI_Recv(&number , 1 , MPI_INT , my_rank-1 , 0,

&status);

if(max==-1) // 1st time
max=number ;

else if(my_rank!=num_proc-1)
{

if(number<max)
MPI_Send(&number , 1 , MPI_INT , my_rank+1 ,

0);
else
{

// send to Pi+1

MPI_Send(&max , 1 , MPI_INT , my_rank+1 , 0);

max = number ;

}

}

}

}

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22947 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 710

VII. CONCLUSIONS & FUTURE WORK

This paper presented several computing algorithms

that were originally designed for single processing.

These algorithms are respectively the Mandelbrot set,

the Bucket Sort, the Monte Carlo, the Grayscale Image

Transformation, the Array Summation, and the

Insertion Sort algorithm. All these algorithms were

redesigned to execute in a parallel computing

environment namely distributed message passing

systems. They were implemented using C#.NET, the

MPI.NET SDK, and the DeinoMPI API. Experiments

showed that the proposed parallel algorithms have a

substantial speed-up in execution time by multitude

of factors.

As future work, the proposed algorithms are to be

rewritten for shared memory architectures making

the use of multi-threading, multi-processor, and

multi-core systems.

Acknowledgment

This research was funded by the Lebanese

Association for Computational Sciences (LACSC),

Beirut, Lebanon, under the “Parallel Programming

Algorithms Research Project – PPARP2019”.

References

[1] Mitsuhiro Shishikura, "The Hausdorff dimension

of the boundary of the Mandelbrot set and Julia

sets", Annals of Mathematics, Second Series, vol.

147, no. 2, pp.225–267, 1998

[2] Charles Petzold, “Programming Microsoft

Windows with C#”, Microsoft Press, 2002.

[3] Microsoft MPI, Microsoft implementation of the

Message Passing Interface, URL:

https://www.microsoft.com/en-

us/download/details. aspx?id=57467, Retrieved

on March 2019.

[4] Corwin, E., Logar, A. "Sorting in linear time -

variations on the bucket sort", Journal of

Computing Sciences in Colleges, vol. 20, no. 1,

pp.197–202, 2004 .

[5] Karger, David R., Stein, Clifford, "A New

Approach to the Minimum Cut Problem", Journal

ACM, vol. 43, no. 4, pp.601–640, 1996

[6] Rafael C. Gonzalez, Richard E. Woods, “Digital

Image Processing”, 3rd Edition, Prentice Hall,

2007.

[7] Maria Petrou, Costas Petrou, “Image Processing:

The Fundamentals”, 2nd edition, Wiley, 2010

[8] David Kruglinski, George Shepherd, Scot Wingo,

"Programming Microsoft Visual C++", Microsoft

Press, 5th edition, ISBN-13: 9781572318571,

1998

[9] DeinoMPI, Implementation of MPI-2 for

Microsoft Windows, URL: http://mpi.deino.net/,

Retrieved on March 2019

[10] Donald Knuth, "5.2.1: Sorting by Insertion, The

Art of Computer Programming, Sorting and

Searching", 2nd edition, Addison-Wesley, ISBN:

0201896850, 1998

