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ABSTRACT 

The purpose of this paper is to locate and estimate the eigen values of quaternion 

doubly stochastic matrices. We present several estimation theorems about the 

eigen values of quaternion doubly stochastic matrices. Mean while, we obtain the 

distribution theorem for the eigen values of tensor products of two quaternion 

doubly stochastic matrices. We will conclude the paper with the distribution for 

the eigen values of generalized quaternion doubly stochastic matrices. 
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INTRODUCTION 

In the past two decades due to study on matrix theory and 

some engineering background problems, many scholars 

dedicated to special matrix, and obtained some important 

and valuable results. Hing zhu-2007 yigeng Huang-1994). 

But in combination matrix theory, combinatorics, probability 

theorey. Mathematical economics and reliability theory etc., 

area there is a special class of non-negative quaternion 

doubly stochastic matrix, which in recent years becomes 

concerned. 

 

The article discuss location, distribution and estimate of the 

eigen value for quaternion doubly stochastic matrix section 2 

introduces the concept of quaternion doubly stochastic 

matrix and generalized quaternion doubly stochastic matrix. 

Section 3 gives a few estimation theorems of quaternion 

doubly stochastic matrix eigen value, also the eigen value 

distribution for tensor Product of two quaternion doubly 

stochastic matrices is obtained. In section 4 we discuss the 

eigen value distribution for generalized quaternion doubly 

stochastic matrices, (3) eigen value estimate of quaternion 

doubly stochastic matrix. 

 

Definition 1 

If both A  and 
TA are quaternion row stochastic matrices, 

A is quaternion double stochastic matrix; Row stochastic  

 

matrix, column stochastic matrix and quaternion double  

stochastic matrix are called stochastic matrix, denoted by 

S(n) . 

 

Definition 2 

The first generalized quaternion row stochastic matrix, the 

first generalized quaternion column stochastic matrix and 

the first generalized quaternion double stochastic matrix are 

called the first generalized quaternion stochastic matrix, 

denoted by IS (n) . 

 

Definition 3 

The second generalized quaternion row stochastic matrix, 

the second generalized quaternion column stochastic matrix 

and the second generalized quaternion double stochastic 

matrix are called the second generalized quaternion 

stochastic matrix, denoted by IIS (n) . 

 

Definition 4 

The third generalized quaternion row stochastic matrix, the 

third generalized quaternion column stochastic matrix and 

the third generalized quaternion double stochastic matrix 
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are called the third generalized quaternion stochastic matrix, 

denoted by IIIS (n) .   

IS (n) ,
 IIS (n) , IIIS (n)

 
are called generalized stochastic 

matrices obviously for S(n) , IS (n)
,
 IIS (n)  and IIIS (n) we 

have the following simple conclusions  

1. I IIIS(n) S (n) S (n)⊂ ⊂  

2. II IIIS(n) S (n) S (n)⊂ ⊂   

3. II IIIS(n) S (n) S (n)⊂ ⊂  

 

Theorem 1 

Suppose cd n nA (a ) ×=  is a quaternion doubly stochastic 

matrix and { }ccm min a ,c,d 1,2,..., n= = then 

{ }(A) G(A) Z : Z m 1 mλ ⊂ = − ≤ − . Where (A)λ is 

denoted the whole eigen values of matrix A , G(A) is 

gerschgorin balls of matrix A . 

 

Proof:  

Since λ  is an arbitrary eigen value of matrix 

cd n nA (a ) ×= and 
T

1 2 nX (x , x ,..., x )= ∈
 

n 1H ×
 is the 

corresponding column eigen vector, let 

c
c

c

x
y

t
= where ct (c 1,2,..., n)= ,

c cy max y (c 1,2,..., n)= =
 
and from Ax x= λ  

n

c c cd d d
d 1

y t a t y
=

λ =∑  

n

e e cd d d
d 1
d e

y t a t y
=
≠

λ =∑  

n

e e ee e e cd d d
d 1
d e

y t a t y a t y
=
≠

λ = +∑  

 

Multiply right each item of the above equation with ey ∗
 

n

e e e ee e e e cd d d e
d 1
d e

y t y a t y y a t y y∗ ∗ ∗

=
≠

λ = +∑  

n

e e e ee e e e cd d d e
d 1
d e

t y y a t y y a t y y∗ ∗ ∗

=
≠

λ = +∑  

n

e e e ee e e e cd d d e
d 1
d e

t y y a t y y a t y y∗ ∗ ∗

=
≠

λ = +∑  

n
d ed d e

e ee e 2
d 1 e
d e

t a y y
( t a t )

y

∗

=
≠

λ − =∑  

 

By triangular equality 
n

e ee e d cd
d 1
d e

t a t t a
=
≠

λ − ≤∑  

n

e ee e cd
d 1
d e

t a Q a
=
≠

λ − ≤ =∑  

ee1 a= −  

Therefore, 

ee ee ee ee ee eee a a e a a e 1 a a e 1 eλ − = λ − + − ≤ λ − + − ≤ − + − = −  

 

Since λ  is an arbitrary eigen value of quaternion doubly 

stochastic matrix cd n nA (a ) ×= , then 

{ }(A) G(A) Z : Z m 1 mλ ⊂ = − ≤ − . 

 

So the eigen values of A are located in the gerschgorin balls 

whose center { }ccm min a ,c,d 1,2,..., n= = and radius 

1 m− . 

Hence proved. 

 

Theorem 2 

Suppose cd n nA (a ) ×= is a quaternion doubly stochastic 

matrix and  

{ }cd cd
cd

M max a ,c,d 1, 2,..., n= = then 

2n n

cd
d 1 c 1

Tra(A) n 1 (Tra(A))
(A) G(A) Z : Z ( M )

n n n= =

 − λ ⊂ = − ≤ − 
  

∑∑
 

Where (A)λ is denoted the whole eigen values of matrix 

A . G(A) is denoted balls whose center is 
Tra(A)

n
 and 

radius is 
2n n

cd
d 1 c 1

Tra(A) n 1 (Tra(A))
(A) G(A) Z : Z ( M )

n n n= =

 − λ ⊂ = − ≤ − 
  

∑∑
 

 

Proof: 

From paper (yixiGu, 1994)  and for arbitrary matrix A  

( ) ( )( )2

2

F

Tra ATra(A) n 1
A

n n n

−λ − ≤ − and because 

cd n nA (a ) H(n)×= ∈ , 

n n
2

cd cdF
c 1 d 1

A M M
= =

≤∑ ∑ . So we have 

( )( )2
n n

cd
c 1 d 1

Tra ATra(A) n 1
(A) G(A) Z : Z M

n n n= =

 − λ ⊂ = − ≤ − 
  

∑∑
 

Similarly we get, 

 ( )( )2
Tra ATra(A) n 1

(A) G(A) Z : Z 1
n n n

  −  λ ⊂ = − ≤ − 
    

This completes the proof of the theorem. 

 

Theorem 3 

Suppose cd n nA (a ) ×= and ( )cd m m
B b

×
= are quaternion 

doubly stochastic matrices, { }1 ccm min a ,c 1,2,.., n= =
 

and radius is 11 m− , and Gerschgorine balls whose center is  
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{ }2 ddm min a ,d 1,2,..., m= =  and radius is 

{ }
n

cc 1 cc
c,d 1

(A) G(A) Z; Z a (n 1)M (1 a )
=

λ ⊂ = − ≤ − −U . 

 

Proof: 

Let { }1 2 n(A) , ,...,λ = λ λ λ  and { }1 2 n(B) , ,...,λ = µ µ µ , 

{ }1 1(A) Z : Z m 1 mλ ⊂ − ≤ −  , 

{ }2 2(A) Z : Z m 1 mλ ⊂ − ≤ −  and since 

( ) [ ]c dA Bλ ⊗ = λ µ  c 1,2,...,n= , d 1,2,...,n= . 

 

Therefore, the eigen values of tensor product for matrix A  

and Matrix B are located in the oval region ( )G A B⊗ . 

Hence proved. 

 

Theorem 4 

Suppose cd n nA (a ) ×= is quaternion doubly stochastic 

matrix and { }1 cd
cd

M max a ,c,d 1, 2,..., n= = , 

{ }
n

cc 1 cc
c,d 1

(A) G(A) Z; Z a (n 1)M (1 a )
=

λ ⊂ = − ≤ − −U  

where (A)λ is denoted the whole eigen values of matrix A , 

G(A) is denoted the generalized Greschgorin balls of matrix 

A . 

 

Proof: 

Because λ is an arbitrary eigen value of matrix 

cd n nA (a ) ×= and ( )T n 1
1 2 nX x , x ,..., x H ×= ∈ is the 

corresponding column eigenvector for Ax x= λ , we set 

So, 

n

ed d xe
d 1
d e

a x
=
≠

= λ∑  

( )
n

ee e ed d
d 1
d e

a x a x
=
≠

λ − =∑  

From schwarz inequality n triagonal inequality, we have the 

following result.  

2
ed d e

2d e d
ee ed2

d e d e ee

a x x
x

a a
xx

∗

≠

≠ ≠

λ − = ≤
∑

∑ ∑  

2 2
ed d e

2 2d e d e
ee ed ed e2

d e d e d ee ee

a x x
x x

a a (n 1) a (n 1) R
x xx

∗
∗

≠

≠ ≠ ≠

λ − = ≤ ≤ − = −
∑

∑ ∑ ∑
 

Where 
2

e ed
d e

R a ,e 1,2,..., n
≠

= =∑ and since 

2

e ed e ed e ee
d e d e

R a M a M (1 a ),
≠ ≠

= ≤ = −∑ ∑

e 1,2,..., n= , ee e eea (n 1)M (1 a )λ − ≤ − −  

holdsbecause λ  is an arbitrary eigenvalue of a matrix A.

 

{ }
n

cc 1 cc
c,d 1

(A) G(A) Z; Z a (n 1)M (1 a )
=

λ ⊂ = − ≤ − −U
The theorem is proven.

  

Eigen value estimate for generalize quaternion doubly 

stochastic matrix. 

Theorem 5: (yuanlu, 2010) 

Suppose cd n n IIIA (a ) S (n)×= ∈ , cca  and dda are the most 

small diagonal elements in A , then 

 

{ }cc dd cc dd(A) G(A) Z : Z a Z a (S a )(S a )λ ⊂ = − − ≤ − −
 

Where (A)λ is denoted the whole eigen values of matrix 

A,G(A)  is denoted cassini oval region of matrix A . 

 

Theorem 6: (yancheng, 2010) 

Suppose cd n n IIIA (a ) S (n)×= ∈  and 

cd m m IIIB (b ) S (m)×= ∈
 
are quaternion doubly stochastic 

matrices 

{ }cc dd cc dd(A B) G(A B) Z : Z a Z a (S a )(S a )λ ⊗ ⊂ ⊗ = − − ≤ − −
 

{ }cc dd cc ddZ : Z b Z b (S b )(S b )− − ≤ − −  

Where (A B)λ ⊗ is denoted the whole eigen values of 

tensor product for matrix A and matrix B , G(A B)⊗ is 

the oval region of the product for cassini oval region 

elements of matrix A and cassini oval region elements of 

matrix B  

 

Proof: 

This proof is same to theorem(3) which is leaven for readers 

 

Theorem 7: 

Suppose cd n n IIIA (a ) S (n)×= ∈  and 

{ }ccm min a ,c 1, 2,..., n= = , then 

{ }(A) G(A) Z : Z m S eλ ⊂ = − ≤ +  

Where (A)λ is denoted the wholeeigen values of matrix 

A , G(A)  is the balls whose center is  

{ }ccm min a ,c 1, 2,..., n= =  and radius S e+  

 

Proof: 

From Gerschgorin balls theorem, we have 
n

ee e ed ee
d 1

a Q a S a
=

λ − ≤ = = −∑  

Therefore,  

ee ee ee ee ee eee a a e a a e S a a e S eλ − = λ − + − ≤ λ − + − ≤ − + + = +  

Because λ is an arbitrary eigen value of matrix 

cd n nA (a ) ×=
 

{ }(A) G(A) Z : Z e 1 eλ ⊂ = − ≤ +  

So the eigen values of matrix A are located in the disc whose 

center is { }ccm min a ,c 1,2,..., n= = and radius is teS . 
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Theorem 8 :  

Suppose cd n n IIIA (a ) S (n)×= ∈ , cd m m IIIB (b ) S (m)×= ∈
 

and { }1 ccm min a ,c 1, 2,..., n= = and 

n n

1 cd cd
c 1 d 1

m max a . a ,c,d 1,2,..., n
= =

 ′ = = 
 
∑ ∑  

{ }2 ddm min b ,d 1, 2,...,m= =
, 

n n

2 cd cd
c 1 d 1

m max b . b ,c,d 1,2,..., n
′

= =

 ′ = = 
 
∑ ∑  

Then

{ } { }cc 2 cc dd 2 dd(A B) G(A B) Z : Z a (n 1)m (1 a ) Z : Z a (n 1)m (1 a )′λ ⊗ ⊂ ⊗ = − ≤ − − • − ≤ − −
 

Where (A B)λ ⊗  is denoted the whole eigen values of 

tensor for matrix A and matrix B , G(A B)⊗  is the oval 

region of the product for elements of balls whose center is 

{ }1 ccm min a ,c,d 1, 2,..., n= =  and radius 1S m+ and 

balls whose center is { }2 ddm min b ,d 1, 2,...,m= =  and 

radius
 2S m+ . 

 

Proof: 
{ } { }min min cc 1 cc dd 2 dd(A B) G (A B) Z : z a (n 1)m (1 a ) Z : z a (n 1)m (1 a )λ ⊗ ⊂ ⊗ = − ≤ − − • − ≤ − −

 
2n n

max max 1 2
c 1 d 1

Tra(A B) n 1 (Tra(A B))
(A B) G (A B) Z : z m m

n n n= =

 ⊗ − ⊗ ′ ′λ ⊗ ⊂ ⊗ = − ≤ • − 
  

∑∑
 

Therefore, the maximum and minimum eigenvalues of 

tensor product for Matrix A and B. Hence proved. 

 

Theorem 

Suppose cd n nA (a ) S(n)×= ∈ , cca  and dda ar the most 

small module diagonal cross elements in A , then 

( )( ){ }cc dd cc dd(A) G(A) Z : Z a Z a S a S aλ ⊂ = − − ≤ + +

Where (A)λ is denoted the whole eigen values of matrix A , 

G(A)  is denoted cassini oval region of matrix A  . 

 

 

 

Theorem 

Suppose cd n n IIIA (a ) S (n)×= ∈  and 

cd m m IIIB (b ) S (m)×= ∈
 
are quaternion doubly stochastic 

matrices, then  

{ }cc dd cc dd(A B) G(A B) Z : Z a Z a (S a )(S a )λ ⊗ ⊂ ⊗ = − − ≤ + +  

{ }cc dd cc ddZ : Z b Z b (S b )(S b )− − ≤ + +  

Where (A B)λ ⊗ is denoted the whole eigen values of 

tensor product for matrix A  and matrix B , G(A B)⊗ is 

the oval region of the product for cassini oval region 

elements of matrix A  and cassini oval region elements of 

matrix B .  

 

Conclusion 

In this paper is to locate and estimate the eigenvalues of 

quaternion doubly stochastic matrices then we present a 

several estimation theorems about the eigen values of 

quaternion doubly stochastic matrices. Finally, we obtain the 

eigenvalues using tensor product of two quaternion doubly 

stochastic matrices. 
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