
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 3 | Mar-Apr 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD22903 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 618

Survey on Natural Language Generation

Joe G. Saliby

Researcher, Lebanese Association for Computational Sciences, Beirut, Lebanon

How to cite this paper: Joe G. Saliby

"Survey on Natural Language

Generation" Published in International

Journal of Trend in Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-3, April 2019,

pp.618-622, URL:

http://www.ijtsrd.co

m/papers/ijtsrd229

03.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

In this paper, we are discussing the basic concepts and fundamentals of Natural

Language Generation, a field in Natural Language Engineering that deals with the

conversion of non-linguistic data into natural information. We will start our

investigation by introducing the NLG system and its different types. We will also

pin point the major differences between NLG and NLU also known as Natural

Language Understanding. Afterwards, we will shed the light on the architecture

of a basic NLG system, its advantages and disadvantages. Later, we will examine

the different applications of NLG, showing a case study that illustrates how an

NLG system operates from an algorithmic point of view. Finally, we will review

some of the existing NLG systems together with their features, taken from the

real world.

KEYWORDS: Natural Language Generation, NLG System, Computational Linguistics

I. INTRODUCTION

NLG or Natural Language Generation is the process of

constructing natural language outputs from non-

linguistic inputs. One of the central goals of NLG is to

investigate how computer programs can be made to

produce high-quality, expressive, uncomplicated, and

natural language text from computer-internal

sophisticated representations of information [1].

II. NLG vs. NLU

NLG is the inverse of NLU (Natural Language

Understanding) or NLI (Natural Language

Interpretation), in that NLG maps from meaning to

text; while, NLU maps from text to meaning [2]. NLG

is easier than NLU because a NLU system cannot

control the complexity of the language structure it

receives as input while NLG links the complexity of

the structure of its output. Table 1 delineates the

differences between NLG and NLU.

Table 1 – NLG vs. NLU

NLG NLU

Relatively Unambiguous Ambiguity in input

Well-formed ill-formed input

Well-specified Under-specification

III. NLG SYSTEM

� Goal: Computer software which produces

understandable and appropriate texts in English

or other human languages.

�

� Input: some underlying non-linguistic

representation of information.

� Output: Documents, reports, explanations, help

messages, and other kinds of texts.

� Knowledge sources required: knowledge of

language and of the domain.

IV. TYPES OF NLG SYSTEMS

There exist different types of NLG systems starting

with the simplest ones - the canned text and template

filling systems, to end with sophisticated systems that

adapt to realistic changes and variations in the

information of a particular domain [3].

A. Canned Text

The process to generate text can be as simple as

keeping a list of canned text that is copied and pasted,

possibly linked or concatenated with some glue text.

The results may be satisfactory in simple domains

such as horoscope machines or generators of

personalized business letters. Canned Text NLG type

systems are easy to implement, but are unable to

adapt to new situations without the intervention of a

programmer [4].

B. Template Filling

In this approach, you fill a template by entering data

into slots and fields, and a natural statement is

generated. Junk mail is generated using template

filling systems in which a mail is sent with addressee

IJTSRD22903

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22903 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 619

name in the right place. Template filling is easy to

implement but not flexible enough to handle

applications with any realistic variation in the

information being expressed or in the context of its

expression. Figure 1 depicts the architecture of a

template filling type NLG system.

Figure 1 – Template Filling NLG System

C. Advanced NLG Systems

As stated previously, canned text and template filling

systems are not that flexible to deal with emerging

situations and real word problems. Therefore, new

NLG systems were investigated in order to solve

complex and advanced problems. Those new NLG

systems must take the following choices [5]:

� Content Selection: The system must choose the

appropriate content to express and generate

natural output based on a specific communicative

goal.

� Lexical Selection: The system must choose the

lexical items most appropriate for expressing

particular concepts.

� Sentence Structure Aggregation: The system must

generate phrases, clauses and sentence-sized

chunks.

� Discourse Structure: The system must deal with

multi-sentence discourse which has a coherent

structure.

V. NLG SYSTEM ARCHITECTURE

A modern architecture for NLG systems comprises a

knowledge base, a discourse planner, and a surface

realizer. The discourse planner selects from a

knowledge pool which information to include in the

output, and creates a text structure to ensure

coherence. On a more local scale, the planner process

the content of each sentence and orders its parts. The

surface realizer is fed by the discourse specification in

order to convert sentence-sized chunks of

representation into grammatically correct sentences

[6]. Figure 2 shows the basic architecture of an NLG

system.

Figure 2 - NLG System Architecture

A. Knowledge Base

It contains all information of a specific domain. It is a

large general-purpose knowledge base that acts as

support for domain-specific application which would

help to speed up and enhance generator porting and

testing on new applications.

B. Communicative Goal

It designates the intended audience who is going to

use the system. The stylistic variations serve to

express significant interpersonal and situational

meanings (text can be formal or informal, slanted or

objective, colorful or dry, etc.)

C. Discourse Planner

It selects the content from the knowledge base and

then structures that content appropriately. The result

is a specification for all choices made for the entire

communication, potentially spanning multiple

sentences and including other annotation. In other

words the discourse planner takes a specified input

and generates linear chunks of information. The two

approaches used by discourse planners are Text

Schemata and Rhetorical Relations [7].

D. Text Schemata

It is a mechanism based on expressing expressions as

different high-level procedures similar to states in

order to structure the output.

E. Rhetorical Relations

It is based on RTS (Rhetorical Structure Theory)

which designates a central segment of text called

nucleus and a more peripheral segment called the

satellite. RST relations are defined in terms of the

constraints they place on nucleus, on the satellite and

on the combination of the nucleus and satellite [8].

F. Surface Realizer

It receives the fully specified discourse plan and

generates individual sentences as contained by its

lexical and grammatical resources. In other words the

surface realizer converts text specifications into

actual natural text. The different linguistic

realizations involved in surface realization process

are the following:

� Insert function words

� Choose correct inflection of content words

� Order words within a sentence

� Apply orthographic rules

The two approaches used by surface realizers are

Systemic Grammar and Functional Unification

Grammar.

G. Systemic Grammar

It represents sentences as collections of functions and

maintains rules for mapping those functions onto

explicit grammatical forms. In Table 2, the one who is

doing the action is the subject I and the action (verb)

or the process being committed by the actor is eat and

finally the object acted upon is the sandwich [9].

Table 2 – Systemic Grammar Example

Sentence I eat sandwich

Mood Subject Predictor Object

Transitivity Actor Process Goal

H. Functional Unification Grammar

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22903 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 620

It is based on features grammar where the basic idea

is to build the generation grammar as a feature

structure with a list of all possible alternations and

then unify this grammar with an input specification

built using the same sort of feature structure.

VI. APPLICATIONS OF NLG SYSTEMS

� Database Content Display:

The description of database contents in natural

language is not a new problem, and some such

generators already exist for specific databases. The

general solution still poses problems, however, since

even for relatively simple applications it still includes

unsolved issues in sentence planning and text

planning.

� Expert System Explanation:

This is a related problem, often however requiring

more interactive ability, since the user’s queries may

not only elicit more information from a (static, and

hence well - structured) database, but may cause the

expert system to perform further reasoning as well,

and hence require the dynamic explanation of system

behavior, expert system rules, etc. This application

also includes issues in text planning, sentence

planning, and lexical choice.

� Speech Generation:

Simplistic text-to-speech synthesis systems have been

available commercially for a number of years, but

naturalistic speech generation involves unsolved

issues in discourse and interpersonal pragmatics (for

example, the intonation contour of an utterance can

express dislike, questioning, etc.). Today, only the

most advanced speech synthesizers compute

syntactic form as well as intonation contour and pitch

level.

� Limited Report and Letter Writing:

As mentioned in the previous section, with

increasingly general representations for text

structure, generator systems will increasingly be able

to produce standardized multi-paragraph texts such

as business letters or monthly reports. The problems

faced here include text plan libraries, sentence

planning, adequate lexicons, and robust sentence

generators.

� Automated document production:

Such as weather forecasts, simulation reports, letters

etc.

� Presentation of information to people in an

understandable fashion:

Such as medical records, expert system reasoning etc.

VII. CASE STUDY: WEATHER FORECAST

In this case study, we will discuss the specifications of

a specific NLG system for weather forecasting

showing the different phases needed to transform

specifications text into natural output text. Figure 3

depicts the weather forecast NLG system structure

[10].

Figure 3 – Weather Forecast NLG System Structure

A. Specifications

� Goal: Produce understandable natural texts in

English to indicate weather situations

� Input: Special commands or syntax

representation of information.

� Output: Report of natural English texts.

� Knowledge sources required: knowledge of the

English language and of the domain of weather

B. Phases

The Discourse Planner takes as input the language

commands and generates different chunks of

information, classified in a tree-like structure which is

depicts in Figure 4.

Figure 4 – Discourse Planner Results

The Surface Realizer takes as input the leaves of

the tree produced previously and generates single

grammatically correct natural sentences.

The month was cooler than average.

The month was drier than average.

There were the average numbers of rain days.

The total rain for the year so far is well below

average.

There was rain on every day for 8 days from 11th to

18th.

Rainfall amounts were mostly small.

The Surface Realizer will process then the above

sentences and produces a coherent English natural

text paragraph.

The month was cooler and drier than average, with

the average number of rain days,

but the total rain for the year so far is well below

average.

Although there was rain on every day for 8 days from

11th to 18th, rainfall amounts were mostly small.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22903 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 621

VIII. EXISTING NLG SYSTEMS

In this section, we are presenting some of the existing

NLG systems, taken from the real world.

A. FoG

� Function: Produces textual weather reports in

English and French

� Input: Graphical/numerical weather depiction

� User: Environment Canada (Canadian Weather

Service)

� Developer: CoGenTex

� Status: Fielded, in operational use since 1992

Figure 5 shows the input of FoG; while, Figure 6

shows its output.

Figure 5 – FoG Non-Linguistic Input

Figure 6 – FoG Natural Text Output

B. STOP System

� Function: Produces a personalized smoking-

cessation leaflet

� Input: Questionnaire about smoking attitudes,

beliefs, history

� User: NHS (British Health Service)

� Developer: University of Aberdeen

Figure 7 shows the input of STOP; while, Figure 8

shows its output.

Figure 7 – STOP Questionnaire

Figure 8 – STOP Natural Output

C. Loughaty

� Function: Generator of natural programming

instructions [11]

� Input: Template wizards, you fill in to generate

programming instructions

� Usage: Learning the basic concepts of

programming

Figure 9 shows the input of Loughaty; while, Figure

10 shows its output.

Figure 9 – Loughaty’s Fill-in Template

Figure 10 – Loughaty’s Generated Natural

Instructions

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22903 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 622

ACKNOWLEDGMENT

This research was funded by the Lebanese

Association for Computational Sciences (LACSC),

Beirut, Lebanon, registered under Decree No. 957,

2011, Beirut, Lebanon.

REFERENCES

[1] Ehud Reiter and Robert Dale, “Building Natural

Language Generation Systems”, Cambridge

University Press, 1999.

[2] Daniel Jurafsky and James H. Martin, “Speech and

Language Processing”, 2nd ed., Pearson Prentice

Hall, 2008.

[3] Harris MD, “Building a Large-Scale Commercial

NLG System for an EMR”, Proceedings of the

Fifth International Natural Language Generation

Conference, pp. 157–60, 2008.

[4] Christopher D. Manning and Hinrich Schütze,

“Foundations of Statistical Natural Language

Processing”, The MIT Press, 1999.

[5] Warschauer, M., & Healey, D., “Computers and

language learning: An overview”, Language

Teaching, vol. 31, pp. 57-71, 1998.

[6] Bates, M., “Models of natural language

understanding”, Proceedings of the National

Academy of Sciences of the United States of

America, vol. 92, no. 22, pp. 9977–9982, 1995.

[7] Iosias Jody, Natural Language Generation, Cred

Press, 2012.

[8] Elke Teich, Systemic Functional Grammar &

Natural Language Generation, Continuum Press,

1999.

[9] Laurence Danlos, The Linguistic Basis of Text

Generation, Cambridge University Press, 2009.

[10] Goldberg E, Driedger N, Kittredge R, “Using

Natural-Language Processing to Produce

Weather Forecasts”, IEEE Expert, vol. 9, no.2, pp.

45–53, 1994.

[11] Youssef Bassil, Aziz Barbar,

"Loughaty/MyProLang – My Programming

Language - A Template-Driven Automatic

Natural Programming Language", Proceedings of

the World Congress on Engineering and

Computer Science, WCECS 2008, San Francisco,

USA.

