

 @ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Learning Game Development Life Cycle
through Project

Advait Maindalkar

Department of Computer Technology
Institute of Technology

ABSTRACT

In the field of software engineering, game
development has been, and continues to remain a
significant and promising sector. The growth of this
field is hard to predict, but there is no denying that it
has potential. A tremendous research has been going
in the gaming industry mainly in the areas like game
development, game designing, game AI engines,
educational games. The emergence of game engine
tools like Game Maker, Unity 3D made life easier to
design and develop more sophisticated games with the
reduced amount of time. Smartphones are one of the
most widely owned and used consumer electronic
devices all over the world, amongst which, Android
smartphones are the most widely used, due to their
various features and economic pricing. And Google’s
Play Store has rather friendly developer policies has
caused many developers to migrate to Android. Hence
the Android Marketplace is home to a plethora of
games, of all sorts of categories. However, upon
closer inspection, it’s observable that users prefer
casual, time pass and fun-oriented games more. Due
to this, we wanted to keep our game simplistic, hence
we opted to make a 2D game, and decided to pick the
puzzle genre, because people tend to like simplistic
yet challenging games, and get addicted to it.

Keywords: Unity, Game Engine, Component
Coding, C#, GUI, Sprite, GameObject

INTRODUCTION

Games play an important role in the daily lives of
many. Video game has come a long way since its

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

ing Game Development Life Cycle
through Project-Based Approach

Advait Maindalkar, Sarvesh Gharat, Prof. Vinod Rathod

of Computer Technology, Bharati Vidyapeeth
Institute of Technology, Kharghar, Navi Mumbai, India

In the field of software engineering, game
development has been, and continues to remain a
significant and promising sector. The growth of this

there is no denying that it
has potential. A tremendous research has been going
in the gaming industry mainly in the areas like game
development, game designing, game AI engines,
educational games. The emergence of game engine

3D made life easier to
design and develop more sophisticated games with the
reduced amount of time. Smartphones are one of the
most widely owned and used consumer electronic
devices all over the world, amongst which, Android

used, due to their
various features and economic pricing. And Google’s
Play Store has rather friendly developer policies has
caused many developers to migrate to Android. Hence
the Android Marketplace is home to a plethora of

ries. However, upon
closer inspection, it’s observable that users prefer

oriented games more. Due
to this, we wanted to keep our game simplistic, hence
we opted to make a 2D game, and decided to pick the

le tend to like simplistic
yet challenging games, and get addicted to it.

Unity, Game Engine, Component-based

Games play an important role in the daily lives of
many. Video game has come a long way since its

origin. Video games could be designed for different
types of platforms ranging from computer to smart
phones. A tremendous research has been going in the
gaming industry mainly in the areas like game
development, game designing, game AI engines,
educational games. The emergence of game engine
tools like Game Maker, Unity 3D made life easier to
design and develop more sophisticated games with the
reduced amount of time. The growth of this field is
hard to predict, but there is no denying that it has
potential.

Games are a medium of learning and entertainment,
which have been widely enjoyed and played by
several people over the world. The gaming industry
has come far ahead from the times of small, old, 2D,
monochrome or 8bit coloured games, to immense, 3D
games with photorealistic 4K textures, high
count detailed models, comprehensive tessellation,
accurate physics, multiplayer elements, etc.

Technically, a game is a software that is designed and
developed with a certain characteristic goal to provide
entertainment. Similar to software products, there is a
development life cycle for delivering a successful
game, namely Game Development Life Cycle
(GDLC). For a good quality game, both development
and design has to be balanced. Designing computer
games requires adequate experience, and great
attention to detail to describe the rules & aesthetics
that compose the interactive experience.

Apr 2018 Page: 1302

6470 | www.ijtsrd.com | Volume - 2 | Issue – 3

Scientific
(IJTSRD)

International Open Access Journal

ing Game Development Life Cycle

origin. Video games could be designed for different
types of platforms ranging from computer to smart
phones. A tremendous research has been going in the
gaming industry mainly in the areas like game
development, game designing, game AI engines,
educational games. The emergence of game engine
tools like Game Maker, Unity 3D made life easier to
design and develop more sophisticated games with the

unt of time. The growth of this field is
hard to predict, but there is no denying that it has

Games are a medium of learning and entertainment,
which have been widely enjoyed and played by
several people over the world. The gaming industry

come far ahead from the times of small, old, 2D,
monochrome or 8bit coloured games, to immense, 3D
games with photorealistic 4K textures, high-polygon
count detailed models, comprehensive tessellation,
accurate physics, multiplayer elements, etc.

lly, a game is a software that is designed and
developed with a certain characteristic goal to provide
entertainment. Similar to software products, there is a
development life cycle for delivering a successful
game, namely Game Development Life Cycle

). For a good quality game, both development
and design has to be balanced. Designing computer
games requires adequate experience, and great
attention to detail to describe the rules & aesthetics
that compose the interactive experience.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1303

Worflow of Game Design in Unity

Unity Game Engine

Unity is a multi-platform game engine,created by
Unity Technologies, which is used in the development
of games, both3D and 2D, along withvarious
simulations and experiences for computers, consoles,
and mobile devices. It supports 2D and 3D graphics,
drag-and-drop functionality and scripting using C#.

Fig 1: Unity, the Game Engine[1]

Within 2D games, Unity allows importation of sprites
and houses a feature-rich 2D world renderer. For 3D
games, Unity allows texture compression, mipmaps,
and resolution settings for each platform that the game
engine supports, and provides addiotional support for
“bump mapping, reflection mapping, parallax
mapping, screen space ambient occlusion (SSAO),
dynamic shadows using shadow maps, render-to-
texture and full-screen post-processing effects[1]”

Unity supports building to 27 different platforms,
including Android.

Component-Based Game Design of Unity

Object-Oriented Programming is used de-facto in
game development, and it can be used in Unity to
create highly-productive workflows. However, Unity
functions better in component-based design.

In the world of programming, the notions of
components and decoupling go hand in hand. A
component is visualised as a smaller piece of a larger
machine. Each component is assigned its own specific
job, and can generally (and optimally) accomplish its
task or purpose without the help of any outside
sources. Furthermore, components rarely belong to a
single machine, and can be joined with various
systems to accomplish their specific task, but achieve

different results when it comes to the bigger picture.
This works since components neither care about the
bigger picture beyond, nor know it exists.

The hardest part about working with components,
however, is learning how to assemblerelated projects
when using them. In most cases, this usually means in
the creation of a lot more scripts – eachdoing smaller,
more specific tasks.

How communication between scripts occurs is also a
significant issue for consideration, as there will be a
lot of tinierpieces and lesser giant classes where every
object knows about every other object. There are
ways around this, such as static variables for core
components of a particular game, such as the
instances of Player.However, thisseldom works for
everything, and it is unwise to do so.There are several
advanced methods to structure your components
properly, and to stay decoupled.

Although, given the factthat Unity has been built with
the focus on components, it has a number of built-in
tools that help accomplish this. There are functions to
get references to a specific component of a specific
object, to check all objects to see which contain a
specific component, etc.

With these types of various useful functions, relevant
information can easily be retrieved, to create that
magical one-way street of knowledge where
components can communicate with objects they
affect, but the component itself has no visibility of
what exactly that object is. All these tools, combined
with the use of interfaces, can give superior
programming capability and flexibility, allowing any
tasks, big or small, to be tackled efficiently.

Since Unity works on Object-Oriented Programming,
it treats everything as objects internally. Everything
can be referred to in the form of a GameObject, which
in itself is a Component, which can then be used to
gain reference to any of the attached component(s)
and its respective properties.

For 2D Games, which was the scope of our project,
the first step is designing, by creating sprites for the
in-game objects. Sprites are 2D images, which
represent some object in your game. E.g. for your
player, the image of a person holding a gun could be a
sprite. Once you have created the Sprites, you load
them into the Unity project, apply required
compressions, and then the assets are ready to be
used. It is advised to get this done before anything

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1304

else, as alignment of the objects in the game world is
done based on the visual part of the objects. This
holds true especially since Unity has a drag-and-drop
interface.

After this step, the sprites need to be dragged into the
game world space, and positioned appropriately.
Doing so automatically creates and object, with a
Sprite Renderer component attached to it, which
contains the source as the image you chose to drag in.

Now, appropriate “components” can be attached to
this object, via the new component button available
within the Unity Editor UI. It can be observed that
Unity features a plethora of different components,
each with its own specific, small functionality, but can
be combined with other components to create a
dynamic and feature-rich ecosystem of objects.

After this, usually scripting begins. The objects need
logical code to be able to perform certain behaviours,
without which the given object is merely a static
object residing somewhere in the game world. Again,
each specific function needs to be separately
programmed into a script. E.g. if say a game consists
of a player and several enemy units, each having
health, aiming functionality, and a certain death
condition and/or animation, there needs to be a
separate script for health mechanism, death
mechanism, and similarly for aiming. Health, e.g.
could manage operations related to health, like
returning the current health value, affecting and/or
changing it, and deciding when to invoke death upon
the player, etc. The Death script could handle death
invocations, and play a certain animation based on
whatever object it is attached to, and the aiming
mechanism can define how the character aims, plus an
another script for how enemy AI aims.

These individual scripts, as components, can be
applied on different objects, their values can be
tweaked for each object separately, and already this is
way simpler than re-creating the same code
differently for objects like player, enemy type I,
enemy type II, etc.

Creating Luminux

While creating Luminux, we first made a level draft,
creating necessary visual assets. This makes further
development easier as the interface is based on drag-
and-drop functionality for the arrangement of objects
or elements. Creating assets beforehand makes it easy
to set up collision detection masks on the sprites. It is

more helpful having this part done beforehand, as
then you can focus on the development part and
bringing everything together, and wiring the
components together appropriately.

Fig. 2: Level Draft of Luminux

Then, we built each object from ground-up, coding
the functionality of each individual element, and
ensuring that there is proper communication between
elements.

Unity allows accessing of any component via its
“GetComponent” function, which can be used to gain
reference to the script component attached to another
GameObject. Then, to communicate info between
objects, the “SendMessage” function can be used,
which supports one parameter, to ensure flow of data
from one object to another while still maintaining
abstraction and protecting encapsulated data.

Slowly, as each component was built, we integrated
them into objects, and performed unit testing on each
individual unit. This ensured that any bugs that
surfaced due to coding errors were fixed right away.
Then, these unit tested components were bought
together and assembled according to the game’s
design, and then Integration Testing was conducted,
testing the functionality and inter-communication of
the various objects and components, and ensuring
consistency across several usage scenarios.

Unity is a rather powerful and flexible game engine,
and it looks after garbage collection and memory
leakage itself, so the developer is relieved of these
concerns and can focus on the game logic instead.

The aforementioned incremental development and
testing method helped us create the specific and
various functional components of the game quickly,
by assembling together the smaller component and
wiring their required and provided data sources.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 1305

The end result was a fully functional game, with
several gameplay elements, and properly-usable UI,
along with suitably tested components which resulted
in a complete and professional experience for the
users who played the game.

CONCLUSION

After creating the game for our project, we learnt
game development approaches and fundamentals, as
well as how to use and code with game engines like
Unity. This helped us understand game development
life cycle, and how to do component-based
programming for Unity. It also helped kick-start our
game development phase.

REFERENCES

1. https://en.wikipedia.org/wiki/Unity_(game_engine
)

2. “Game Design Research”, Annakaisa
Kultima,https://www.researchgate.net/publication/
282185969_Game_Design_Research

3. Rido Ramadan and Yani Widyani, “Game
Development Life Cycle Guidelines”,
http://ieeexplore.ieee.org/document/6761558/

