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ABSTRACT 

The ubiquitin proteasome system (UPS) is essential for many cellular processes, 

including the cell cycle, the regulation of gene expression and cell survival. 

Dysfunctional UPS can be associated with the underlying pathophysiology of 

specific diseases. The 20S proteasome core is composed of 28 subunits, which 

are arranged in four stacked rings, resulting in a barrel-shaped structure. The 

two end rings are each formed by seven α subunits, and the two central rings are 

each formed by seven β subunits. The  The over expression of LMP2/β1i in 

trophoblast cells of hydatidiform moles may contribute to its highly invasive 

phenotype. LMP2/β1i-deficient mice reportedly exhibit uterine neoplasms, with 

a disease prevalence of 36% by 12 months of age. Embryo implantation involves 

the invasion of placental extravillous trophoblast cells (EVTs) into the uterus. 

Normal human placentas or placentas from hydatidiform mole patients were 

collected and the expression of LMP2/β1i in different cell types including 

trophoblastic column (TC), cytotrophoblast cells (CTB) and syncytiotrophoblasts 

(STBs) was examined under different pathological states by pathological 

analysis. The expression of LMP2/β1i in TC of partial hydatidiform mole and 

complete hydatidiform mole placentas, was higher than that in TC of normal 

human placentas. Further the experiments with human and mouse uterine 

tissues clarified the physiological significance of LMP2/β1i in malignant 

myometrium transformation. In this mini review, we covered recent insights into 

the molecular pathways involved in LMP2/β1i-mediated physiological functions, 

with a particular focus on embryo implantation and uterine mesenchymal 

tumorigenesis.  
 

 

Keywords: LMP2/β1i, implantation, trophoblast, leiomyosarcoma, leiomyoma 

INTRODUCTION 

The eukaryotic UPS is responsible for most aspects of 

regulatory and quality-control protein degradation in cells. 

Its substrates, which are usually modified by polymers of 

ubiquitin, are ultimately degraded by the immuno-

proteasome [1,2]. The ubiquitin-proteasome system (UPS) 

controls almost all basic cellular processes, such as 

progression through the cell cycle, signal transduction, cell 

death, immune responses, metabolism, protein quality 

control and development by degrading short-lived 

regulatory or structurally aberrant proteins [1,3,4]. 

Cytoplasmic proteins are mostly degraded by a protease  

complex, which has many substrates consisting of twenty-

eight 20 to 30-kDa subunits, referred to as the immuno- 

 

proteasome, and it plays key roll functions in the nucleus 

and cytoplasm of eukaryotic cells, while LMP2/β1i and 

LMP7/β5i individually appear to be more intense in the 

endoplasmic reticulum [5]. The proteasome structure is a 

cylindrical complex containing a core of four stacked rings 

around a central pore, with each ring being composed of 

seven individual proteins. The inner two rings are made of 

seven β subunits that contain three to seven protease active 

sites [6-10]. Two of the β subunits with an NH2-terminal 

threonine residue, low molecular mass polypeptide (LMP) 

2/β1i and LMP7/σ5ι, which are induced by interferon (IFN)-

γ, are encoded within the class II region of the MHC, directly 

adjacent to the transporter associated with antigen 
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presentation (TAP) 1 and TAP2 genes [11]. Several 

experiments have shown that IFN-γ-induced-incorporation 

of LMP2/β1i and LMP7/β5i into the 20S proteasome is 

responsible for antigen presentation [12,13]. Furthermore, 

the proteasome reconstructed by LMP2/β1i and LMP7/β5i, 

referred to as immuno-proteasome, produced increased 

chymotryptic and tryptic protease activities and modulated 

cleavage-site preferences of the proteasome [14-17]. Thus, 

immuno-proteasomes in different cells normally differ in 

subunit composition and functional activities in a way that 

correlates with the cell’s capacity for antigen presentation 

[1]. This review shows that physiological functions of 

LMP2/β1i are important for maintaining embryo 

implantation and transforming mesenchymal cell in the 

female genital system. 

Physiological significance of LMP2/ββββ1i in embryo 

implantation 

Implantation of the embryo into the uterine endometrium is 

a highly regulated event critical for the establishment of 

pregnancy. Successful embryo implantation depends upon 

the synchronized development of both the invasiveness of 

the embryo and receptivity of the endometrium [18]. This 

process is accompanied by extensive degradation and 

remodeling of the extracellular matrix (ECM). Numerous 

studies in mice, primates, and humans have shown that 

matrix metalloproteinases (MMPs), which are responsible 

for degrading the ECM, are key regulators for blastocyst 

implantation [19-21]. Ubiquitin-related proteins were 

shown to be present in human, baboon, rhesus monkey, cow, 

sheep, and mouse pregnant uteri [22-26], and may be 

essential for endometrial modification and placental 

development during early pregnancy. However, no direct 

evidence has show whether the UPS is involved in embryo 

implantation or has a regulatory effect on the activities of 

MMP-2 and MMP-9. 

The expression levels of LMP2/β1i and LMP7/β5i 

significantly increased with the elongation of pregnancy. 

LMP2/β1i and LMP7/β5i mRNAs were mainly expressed in 

the luminal and glandular epithelia on Day 12 of pregnancy. 

On Days 18 and 26 of pregnant Macaca mulatta, strong 

signals of LMP2/β1i and LMP7/β5i mRNAs were detected in 

the placental villi, trophoblastic column, and arterial 

endothelial cells close to the implantation site, and moderate 

expressions were found in the trophoblastic shell and 

glandular epithelium (Fig. 1). LMP2/β1i and LMP7/β5i 

mRNAs were extensively distributed in the stroma on Day 26 

of pregnancy. The expression patterns of LMP2/β1i and 

LMP7/β5i were like those of their transcripts, whereas weak 

immunostaining LMP2/β1i and LMP7/β5i were detected in 

stroma at all stages of pregnancy. LMP2/β1i and LMP7/β5i 

may be involved in placental villi invasion, degradation of 

ECM, immune tolerance, glandular secretion, and 

angiogenesis. The regulatory mechanism of LMP2/β1i on the 

expression and activities of MMP-2 and MMP-9 was 

examined using the human invasive extra villous trophoblast 

cell line, HTR8/Svneo. Although in LMP2/β1i-inhibited cells, 

the expression of mRNA encoding the nuclear factor kappa-B 

(NF-κB)1 subunits, p105 and RelAp65 remained normal, the 

20S proteasome processes NF-κB1 p105 into p50 is not 

observed [27]. In defective condition of LMP2/β1i, inactive 

NF-κB1 results in defects in MMP-2 and MMP-9 activation. 

Embryo implantation involves the invasion of placental extra 

villous trophoblast cells (EVTs) into the uterus. Hyperactive 

EVT invasion occurs in hydatidiform moles and 

choriocarcinomas. Normal human placentas or placentas 

from hydatidiform mole patients were collected and the 

expression of LMP2/β1i in different cell types including 

trophoblastic column (TC), cytotrophoblast cells (CTB) and 

syncytiotro phoblasts (STB) was examined under different 

pathological states by immunohistochemical analysis. The 

expression of LMP2/β1i in TC of partial hydatidiform mole 

and complete hydatidiform mole placentas, was higher than 

that in TC of normal human placentas. The overexpression of 

LMP2/β1i in trophoblast cells of hydatidiform moles may 

contribute to its highly invasive phenotype (Fig. 1). 

 

Figure1. This picture shows implantation of the blastocyst, 

an early stage in embryo development,into the uterine 

epithelium. Cooperative interactions between trophoblast 

cells and maternal cells then form the placenta. In mammals, 

trophoblast cells lie adjacent to the surface epithelium of the 

uterus, but they do not invade it. Natural killer (NK) cells are 

also not present. Nutrients are transferred to the fetus from 

maternal blood vessels close to the uterine epithelium and in 

glandular secretions. This arrangement is known as an 

epitheliochorial placenta. The endometrium does not 

transform into the decidua, which is the name given to an 

endometrium that has differentiated under the influence of 

progesterone. In human placentation, trophoblast cells 

invade blood vessels as in rhesus macaques, but they replace 

the vascular endothelium in the myometrium to a greater 

degree. Invasion extends beyond the endometrium into the 

myometrium, whereas it is restricted to the endometrium in 

rhesus macaques. In addition, trophoblast cells invade the 

decidua, replacing the medial smooth muscle with fibrinoid 

material. Accompanying these changes is the presence of 

numerous NK cells. The expression of LMP2/β1i was 

observed in the placental villi, trophoblastic column, and 

arterial endothelial cells close to the implantation site, and 

the moderate expression of LMP2/β1i was found in the 

trophoblastic shell and glandular epithelium. LMP2/β1i 

expression in trophoblast cells of hydatidiform moles may 

contribute to its highly invasive phenotype. 

Physiological role of LMP2/ββββ1i in uterine mesenchymal 

tumorigenesis 

UPS is essential physiological function for many cellular 

processes, including the cell cycle, regulation of gene 

expression, cell survival and immunological functions. The 

individual expression of LMP2/β1i, LMP7/β5i, and 

LMP10(MECL-1)/β2i subunits is believed to contribute to 

the initiation and development of disorders including 

tumorigenesis [27-29]. A recent study revealed a unique role 
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for LMP7/β5i in controlling pathogenic immune responses 

and provided a therapeutic rationale for targeting LMP7/β5i 

in autoimmune disorders, especially rheumatoid arthritis 

(RA) [30]. In mouse models of RA, a LMP7/β5i-inhibitory 

treatment reversed the signs of disease and resulted in 

reductions in cellular infiltration, cytokine production, and 

autoantibody levels. Homozygous mice deficient in 

LMP2/β1i exhibit tissue- and substrate-dependent 

abnormalities in the physiological functions of UPS [31,32]. 

Uterine leiomyosarcoma (uLMS) reportedly occurred in 

female LMP2/β1i-deficient mice at the age of 6 months or 

older, and the incidence at 14 months of age was about 37% 

[32-34]. Disease prevalence in mice is similar to that of 

human uLMS, which occurs after menopause. Histological 

studies of LMP2/β1i-deficient uterine tumors revealed the 

characteristic abnormalities of human uLMS [32]. Recent 

reports have demonstrated that LMP2/β1i is obligatory for 

tumor surveillance and the tissue-specific role of LMP2/β1i 

in protection from spontaneous uterus neoplasms [31,32]. 

The nuclei of tumor cells varied in size and shape; 

furthermore, mitosis is frequently observed. The tumors 

lacked lymphoid infiltrates, a sign of immune-recognition, 

and consisted of uniformly elongated myometrium cells 

arranged into bundles. The nuclei of tumor cells varied in 

size and shape. In contrast, the myometrium cells of 

C57BL/6 mice were normal in appearance [32]. Whereas 

relatively few ki-67-positive cells, which are proliferating 

cells, were observed in the basal cell layer of the normal 

myometrium, most of the basal cells in LMP2/β1i-deficient 

mice strongly expressed ki-67 [32]. This immunological 

staining indicates the abnormal proliferation of LMP2/β1i-

lacking cells in the basal layer. Although the immuno-

proteasome from LMP7/β5i knock out mice showed altered 

proteolytic activities and cleavage site preferences, no report 

has shown that LMP7/β5i knock out mice exhibit uterine 

neoplasms [35]. Therefor complex of molecule of LMP2/β1i 

with cellular cofactor(s), neither than physiological function 

of immunoproteasome, likely prevents initiation of uterine 

mesenchymal tumor [36,37].  

Furthermore, immune-staining experiments revealed a 

serious loss in the ability to induce LMP2/β1i expression in 

human uLMS tissue relative to that in leiomyoma (LMA) or a 

normal myometrium located in the same section [36,37]. Of 

the 54 cases we examined with human uLMS, 46 were 

negative for LMP2/β1i expression, 4 were focally positive, 

and 2 were partially positive [37]. In two uLMS cases, 

expression levels of LMP2/β1i were also evaluated in 

skeletal muscle and rectum metastases from individual 

patients with uLMS [37,38]. All lymph nodes were negative 

for human uLMS metastases, and IHC studies showed 

positivity for ki-67 and negativity for LMP2/β1i [37-39]. UPS 

regulates the turnover and functions of hundreds of cellular 

proteins in uterine tumorigenesis [40]. 

Final Consideration 

In conclusion, LMP2/β1i was highly overexpressed in 

trophoblast cells of hydatidiform moles, and expression of 

LMP2/β1i in aggressive EVT cells directly regulated cell 

invasion. Human uLMS is refractory to chemotherapy and 

has a poor prognosis. Defective expression of LMP2/β1i may 

be one of the risk factors for the development of human 

uLMS-like neoplasm. The physiological functions of 

LMP2/β1i with cellular cofactor(s) are important to 

maintain embryo implantation and the transformation of 

mesenchymal cells in the female reproductive system. 
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