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Abstract

The singular stress problem of a peripheral edge
crack around a cavity of spherical portion in an
infinite elastic medium when the crack is sub-
jected to a known pressure is investigated. The
problem is solved by using integral transforms
and is reduced to the solution of a singular in-
tegral equation of the first kind. The solution
of this equation is obtained numerically by the
method due to Erdogan, Gupta , and Cook, and
the stress intensity factors are displayed graphi-
cally.

Also investigated in this paper is the penny-
shaped crack situated symmetrically on the cen-
tral plane of a convex lens shaped elastic mate-
rial.

Key words: cavity of spherical portion/ periph-
eral edge crack/penny-shaped crack /SIF.

1.Introduction.

The problem of determining the distribution
of stress in an elastic medium containing a cir-
cumferential edge crack has been investigated by
several researchers including the present author.
Among these investigations, the notable ones
are Keer et al.[1,2],Atsumi and Shindo[3,4], and
Lee[5,6]. Keer et al.[1] considered a circumfer-
ential edge crack in an extended elastic medium
with a cylindrical cavity the analysis of which
provides immediate application to the study of
cracking of pipes and nozzles if the crack is small.

Another important problem involving a cir-
cumferential edge crack is that concerned with a
spherical cavity. Atsumi and Shindo[4] investi-
gated the singular stress problem of a peripheral
edge crack around a spherical cavity under uni-
axial tension field. In more recent years, Wan
et al.[7] obtained the solution for cracks emanat-
ing from surface semi-spherical cavity in finite
body using energy release rate theory. In previ-
ous studies concerning the spherical cavity with
the circumferential edge crack, the cavity was a
full spherical shape. In this present analysis, we
are concerned with a cavity of a spherical por-
tion, rather than a full spherical cavity. More
briefly describing it, the cavity looks like a con-
vex lens. Here, we employ the known methods of
previous investigators to derive a singular inte-
gral equation of the first kind which was solved
numerically, and obtained the s.i.f. for various
spherical portions. It is also shown that when
this spherical portion becomes a full sphere, the
present solution completely agrees with the al-
ready known solution.

2.Formulation of problem and reduction to
singular integral equation. 0

We employ cylindrical coordinates (r, φ, z)
with the plane z = 0 coinciding the plane of pe-
ripheral edge crack. The spherical coordinates
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(ρ, θ, φ) are connected with the cylindrical coor-
dinates by

z = ρ cos θ, r = ρ sin θ.

Spherical coordinates (ζ, ϑ, φ) whose origin is
located at z = −δ, r = 0, and is the center of
the upper spherical surface, are also used. The
cavity is symmetrical with respect to the plane
z = 0.

The crack occupies the region z = 0, 1 ≤
r ≤ γ. So the radius of the spherical cavity is
ζ0 =

√
1 + δ2.

The boundary conditions are:

On the plane z = 0, we want the continuity of
the shear stress, and the normal displacement:

uz(r, 0+)−uz(r, 0−) = 0, γ ≤ r < ∞, (2.1)

σrz(r, 0+)− σrz(r, 0−) = 0, 1 ≤ r < ∞.
(2.2)

And the crack is subjected to a known pressure
p(r), i.e.,

σzz(r, 0+) = −p(r), 1 ≤ r ≤ γ. (2.3)

On the surface of the spherical cavity, stresses
are zero:

σζζ(ζ0, ϑ) = 0, (2.4)

σζϑ(ζ0, ϑ) = 0. (2.5)

We can make use of the axially symmetric so-
lution of the equations of elastic equilibrium due
to Green and Zerna [8] which states that if ϕ(r, z)
and ψ(r, z) are axisymmetric solutions of Laplace
equation, then the equations

2µur =
∂ϕ

∂r
+ z

∂ψ

∂r
, (2.6)

2µuz =
∂ϕ

∂z
+ z

∂ψ

∂z
− (3− 4ν)ψ, (2.7)

where µ is the modulus of rigidity and ν is Pois-
son’s ratio, provide a possible displacement field.
The needed components of stress tensor are given
by the equations

σrz =
∂2φ

∂r∂z
+ z

∂2ψ

∂r∂z
− (1− 2ν)

∂ψ

∂r
, (2.8)

σzz =
∂2φ

∂z2
+ z

∂2ψ

∂z2
− 2(1− ν)

∂ψ

∂z
. (2.9)

The functions φ(1) and φ(2) for the regions z > 0
and z < 0, respectively, are chosen as follows:

φ(1)(r, z) = (2ν − 1)
∫ ∞

0
ξ−1A(ξ)J0(ξr)e−ξzdξ

+
∞∑

n=0

an
Pn(cos θ)

ρn+1
, (2.10)

φ(2)(r, z) = (2ν − 1)
∫ ∞

0
ξ−1A(ξ)J0(ξr)eξzdξ

−
∞∑

n=0

an(−1)n Pn(cos θ)
ρn+1

. (2.11)

Here the superscripts (1) and (2) are taken for
the region z > 0 and z < 0, respectively. The
functions ψ(1) and ψ(2) are chosen as follows:

ψ(1)(r, z) =
∫ ∞

0
A(ξ)J0(ξr)e−ξzdξ

+
∞∑

n=0

bn
Pn(cos θ)

ρn+1
, (2.12)

ψ(2)(r, z) = −
∫ ∞

0
A(ξ)J0(ξr)eξzdξ

+
∞∑

n=0

bn(−1)n Pn(cos θ)
ρn+1

. (2.13)

Then we can immediately satisfy condition (2.2)
by this choice of functions (2.10)-(2.13).

Now the condition (2.1) requires
∫ ∞

0
A(ξ)J0(ξr)dξ = 0, r > γ. (2.14)

0

Equation (2.14) is automatically satisfied by
setting

A(ξ) =
∫ γ

1
tg(t)J1(ξt)dt. (2.15)
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Then from the boundary condition (2.3), we
obtain

∫ ∞

0
ξA(ξ)J0(ξr)dξ −

∞∑

n=0

a2n
(2n + 1)2P2n(0)

r2n+3

−2(1− ν)
∞∑

n=0

b2n+1
P ′

2n+1(0)
r2n+3

= −p(r),

1 ≤ r ≤ γ, (2.16)

where prime indicates the differentiation with re-
spect to the argument.

By substituting (2.15) into (2.16), it reduces
to

− 2
π

∫ γ

1
tg(t)R(r, t)dt−

∞∑

n=0

r−(2n+3){P2n(0)

×(2n + 1)2a2n + αb2n+1P
′
2n+1(0)} = −p(r),

1 ≤ r ≤ γ, (2.17)

where

R(r, t) =
1

r2 − t2
E

(
r

t

)
, t > r,

=
r

t

1
r2 − t2

E

(
t

r

)
− 1

rt
K

(
t

r

)
, r > t.

(2.18)
K and E in (2.18) are complete elliptic integrals
of the first and the second kind, respectively and
α = 2(1− ν).

The solution will be complete, if the condi-
tions on the surface of the spherical cavity are
satisfied.

3.Conditions on the surface of the spheri-
cal cavity.

Equation (2.17) gives one relation connecting
unknown coefficients an and bn. The stress com-
ponents besides (2.8) and (2.9) which are needed
for the present analysis are given by the following
equations

σζζ =
∂2φ

∂ζ2
+ ζ cosϑ

∂2ψ

∂ζ2
− 2(1− ν) cos ϑ

∂ψ

∂ζ

+2ν
sinϑ

ζ

∂ψ

∂ϑ
, (3.1)

σζϑ =
1
ζ

∂2φ

∂ζ∂ϑ
− 1

ζ2

∂φ

∂ϑ
+ cosϑ

∂2ψ

∂ζ∂ϑ

+(1− 2ν) sinϑ
∂ψ

∂ζ
− 2(1− ν)

cosϑ

ζ

∂ψ

∂ϑ
. (3.2)

To satisfy boundary conditions on the spherical
surface, it is needed to represent φ, ψ in (2.10)-
(2.13) in terms of ζ, ϑ variables. To do so we uti-
lize the following formula whose validity is shown
in the Appendix 1. An expression useful for the
present analysis is the following

Pn(cos θ)
ρn+1

=
∞∑

k=0

(
n + k

k

)
Pn+k(cosϑ)

ζn+k+1
δk.

(3.3)

Thus
∞∑

n=0

an
Pn(cos θ)

ρn+1
=

∞∑

n=0

an

∞∑

k=0

(
n + k

k

)

×Pn+k(cosϑ)
ζn+k+1

δk =
∞∑

j=0

Pj(cosϑ)
ζj+1

Aj , (3.4)

where

Aj =
j∑

n=0

j!
(j − n)!n!

anδj−n. (3.5)

Also ∫ ∞

0
ξ−1A(ξ)J0(ξr)e−ξzdξ =

∫ γ

1
tg(t)

×
∫ ∞

0
ξ−1J0(ξr)J1(ξt)e−ξzdξdt. (3.6)

If we make use of the formula in Whittaker and
Watson[9,pp.395-396]∫ π

−π
exp{−ξ(z+ix cosu+iy sinu)}du = 2πe−ξzJ0(ξr),

0 to the inner integral of (3.6), it can be written
as, if we are using the shortened notation

β = z + ix cosu + iy sinu,

then ∫ ∞

0
ξ−1J0(ξr)J1(ξt)e−ξzdξ

=
1
2π

∫ π

−π

∫ ∞

0
ξ−1J1(ξt)e−ξβdξdu

0@IJTSRD— Available Online@www.ijtsrd.com—Volume-2—Issue-3—Mar-Apr 2018 Page:984



4INTERNATIONAL JOURNAL OF TREND IN SCIENTIFIC RESEARCH AND DEVELOPMENT(IJTSRD)ISSN:2456-6470

=
1
2π

∫ π

−π

t

β +
√

β2 + t2
du

= − 1
2π

∫ π

−π

{
β

t
−

√
1 +

β2

t2

}
du

= − 1
2π

∫ π

−π

{
β

t
−

∞∑

n=0

(−1
2)n(−1)n

n!

(
β

t

)2n}
du.

(3.7)
As |β| < |t|, the above series expansion is valid.
Next,

β2n = (−δ+Z+ix cosu+iy sinu)2n = (−δ+β′)2n

=
2n∑

k=0

(
2n
k

)
(−δ)2n−k(β′)k, (3.8)

where (r, φ, Z) is the cylindrical coordinates sys-
tem centered at (r, z) = (0,−δ). We have
the following formula from Whittaker and Wat-
son[9,p.392]∫ π

−π
(β′)ndu =

∫ π

−π
(Z + ix cosu + iy sinu)ndu

= 2πζnPn(cosϑ). (3.9)
If we utilize (3.8) and (3.9) in (3.7), it can be
written as

∫ ∞

0
ξ−1J0(ξr)J1(ξt)e−ξzdξ

=
∞∑

n=0

(−1
2)n(−1)n

n!
1

t2n

×
2n∑

k=0

(
2n
k

)
(−δ)2n−kζkPn(cosϑ)

+δ − ζ

t
P1(cosϑ). (3.10)

Thus finally, from (3.4), (3.6) and (3.10), φ(1)

can be written in terms of spherical coordinates
(ζ, ϑ) as

φ(1) =
∞∑

k=0

Pk(cosϑ)
[

Ak

ζk+1
+ Φkζ

k

]

+δ

∫ γ

1
tg(t)dt− ζP1(cosϑ)

∫ γ

1
g(t)dt,

where

Φk = −(α− 1)
∞∑

n=[(k+1)/2]

(−1
2)n(−1)n

n!

× (2n)!
(2n− k)!k!

(−δ)2n−k

∫ γ

1

g(t)
t2n−1

dt, (3.11)

and [(k+1)/2] is the greatest integer ≤ (k+1)/2.

It is also necessary to express ψ(1) in terms of
spherical coordinates (ζ, ϑ). Now, as in (3.4)

∞∑

n=0

bn
Pn(cos θ)

ρn+1
=

∞∑

j=0

Pj(cosϑ)
ζj+1

Bj , (3.12)

where

Bj =
∞∑

n=0

j!
(j − n)!n!

bnδj−n.

We first express following integral in (ρ, θ) co-
ordinates∫ ∞

0
A(ξ)J0(ξr)e−ξzdξ =

∫ γ

1
tg(t)dt

×
∫ ∞

0
J1(ξt)J0(ξr)e−ξzdξ. (3.13)

The inner integral on the right-hand side of
(3.13) is

−1
t

∫ ∞

0
J0(ξr)e−ξz ∂

∂ξ
J0(ξt)dξ =

1
t

−1
t

∫ ∞

0
{rJ1(ξr) + zJ0(ξr)}e−ξzJ0(ξt)dξ.

(3.14)
Using the equation in Erdélyi et al.[10] 0

J0(ξt) =
2
π

∫ ∞

t

sin(ξx)dx√
x2 − t2

,

equation (3.14) is equal to

1
t

+
1
t

2
π

∫ ∞

t

dx√
x2 − t2

×=
∫ ∞

0
{rJ1(ξr) + zJ0(ξr)}e−ξ(z+ix)dξ

=
1
t

+
1
t

2
π

∫ ∞

t

1√
x2 − t2

= −ix√
r2 + (z + ix)2

dx

=
1
t
−1

t

2
π

∫ ∞

t

1√
x2 − t2

= dx√
1− 2 ρ

x i cos θ + ( ρ
x i)2

=
1
t
− 1

t

∞∑

n=0

(
ρ

t

)2n+1

(−1)nP2n+1(cos θ)
(1
2)n

n!
,

(3.15)
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where we used the generating function

1√
1− 2x cos θ + x2

=
∞∑

n=0

Pn(cos θ)xn.

To express (3.15) in the (ζ, ϑ) spherical coordi-
nates, we use the following formula whose valid-
ity is shown in the Appendix 2.

ρ2n+1P2n+1(cos θ) =
2n+1∑

k=0

(2n + 1)!
k!(2n + 1− k)!

×(−δ)2n+1−kζkPk(cosϑ). (3.16)
0 If we use (3.16) in (3.15), then with (3.12), we
get ψ(1) in spherical coordinates (ζ, ϑ)

ψ(1) =
∞∑

k=0

Pk(cosϑ)
(

Bk

ζk+1
+Ψkζ

k

)
+

∫ γ

1
g(t)dt,

(3.17)
where

Ψk = −
∞∑

n=[k/2]

(−1)n(1
2)n

n!
(2n + 1)!

k!(2n + 1− k)!

×(−δ)2n+1−k

∫ γ

1

g(t)
t2n+1

dt.

Then if we substitute these values of φ(1) and
ψ(1) given by (3.11) and (3.17) into (3.2), and
simplify the results by using the properties of
Legendre polynomials, from the condition that
on the spherical surface ζ = ζ0, the shear stress
σζϑ = 0, we obtain the following equation

−Ak+1
k + 3
ζk+4
0

+
Bk

ζk+2
0

α− (k + 1)2

2k + 1

−Bk+2

ζk+4
0

(k + 3)(2α + k + 2)
2k + 5

+kζk−1
0 Φk+1 + ζk−1

0 Ψk
k(k + 1− 2α)

2k + 1

−ζk+1
0 Ψk+2

k + 2 + α− (k + 2)(k + 3)
2k + 5

= 0.

(3.18)

Likewise, from the condition σζζ(ζ0, ϑ) = 0,
we get following two equations,

−A0
2
ζ3
0

− B1

ζ3
0

2(2α + 1)
3

− 1
3
Ψ1(α− 4) = 0,

(3.19a)

−Ak+1
(k + 2)(k + 3)

ζk+4
0

+
Bk

ζk+2
0

(k + 1){2− α− (k + 1)(k + 4)}
2k + 1

−Bk+2

ζk+4
0

(k + 2)(k + 3)(2α + k + 2)
2k + 5

−k(k+1)ζk−1
0 Φk+1−ζk−1

0 Ψk
k(k + 1)(k + 1− 2α)

2k + 1

−ζk+1
0 Ψk+2

(k + 2){(k + 2)(k − 1) + α− 2}
2k + 5

= 0.

(3.19b)
Thus if we multiply (3.18) by k +2 and subtract
(3.19b) from the resulting equation we find

Bk = − ζk+2
0 (2k + 1)

α(2k + 3) + 2k(k + 1)

[
k(2k+3)ζk−1

0 Φk+1

+ζk−1
0 Ψk

(2k + 3)k(k + 1− 2α)
2k + 1

+ζk+1
0 Ψk+2k(k+2)

]
.

(3.20)

If we solve (3.20) for bi using the theorem
which is in the Appendix 3 and the relation,

Φk+1 =
α− 1
k + 1

Ψk,

we find

bi

δi
=

i∑

k=0

i!(−1)i−k

(i− k)!k!
1
δk

[N1(k)Ψk + N2(k)Ψk+2],

(3.21)
where

N1(k) = − ζ2k+1
0 (2k + 3)k

α(2k + 3) + 2k(k + 1)

(−α + k2

k + 1

)
,

N2(k) = −ζ2k+3
0 (2k + 1)k(k + 2)

α(2k + 3) + 2k(k + 1)
.

Equation (3.21) can be written as

bi = −
i∑

k=0

i!(−1)i−k

(i− k)!k!
δi

δk

∫ γ

1

g(t)
t

×
1∑

n=0

[Nn+1(k)fk+2n

(
1
2
,
δ

t

)
dt, (3.22)
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where

fk(c, x) =
(−δ)1−k

k!

∞∑

`=[k/2]

(−1)`(c)` (2` + 1)!x2`

(2` + 1− k)!`!

with (c)` = c(c + 1)(c + 2) · · · (c + `− 1).

Now from (3.19a,b) we have

Ak+1 = M1(k)Ψk + M2(k)Ψk+2 + M3(k)Ψk+4,

A0 = Ã1Ψ1 + Ã2Ψ3,

where 0

M1(k) = − ζ2k+3
0 k(−α + k2)

(k + 2)(k + 3)(2k + 1)

×
[
(2k + 3)g̃(k)

h(k)
+ 1

]
,

M2(k) =
ζ2k+5
0

k + 3

[
− g̃(k)

h(k)
k(k+1)+

g̃(k − 2)
2k + 5

+
(k + 2)(2k + 7)(2α + k + 2){−α + (k + 2)2}

(2k + 5)h(k + 2)

]
,

M3(k) =
ζ2k+7
0 (k + 2)(k + 4)(2α + k + 2)

h(k + 2)
,

Ã1 = −ζ3
0

6

{
α− 4− 5(2α + 1)(−α + 1)

h(1)

}
,

Ã2 =
3(2α + 1)ζ5

0

h(1)
,

with

g̃(k) = 2− α− (k + 1)(k + 4),

h(k) = α(2k + 3) + 2k(k + 1).
In a similar way a′is can be found from these
equations as follows:

a2i = (Ã1Ψ1 + Ã2Ψ3)δ2i

+
2i−1∑

k=0

(2i)!(−δ)2i−k−1

(2i− 1− k)!(k + 1)!
F̃ (k),

where

F̃ (k) = −
∫ γ

1

g(t)
t

[
M1(k)fk

(
1
2
,
δ

t

)
+ M2(k)

×fk+2

(
1
2
,
δ

t

)
+ M3(k)fk+4

(
1
2
,
δ

t

)]
dt.

Thus
∞∑

i=0

a2i
(2i + 1)2P2i(0)

r2i+3
=

a0

r3
+

∞∑

i=1

(Ã1Ψ1 + Ã2Ψ3)

×δ2i (2i + 1)2(−1)i(1
2)i

r2i+3i!

+
∞∑

i=1

(2i + 1)2(−1)i(1
2)i

r2i+3i!

×
2i−1∑

k=0

(2i)!(−δ)2i−k−1

(2i− 1− k)!(k + 1)!
F̃ (k).

If we interchange the order of summation in the
last term of the above equation, and use

Ψ1 = −
∫ γ

1

g(t)
t

f1

(
1
2
,
δ

t

)
dt,

Ψ3 = −
∫ γ

1

g(t)
t

f3

(
1
2
,
δ

t

)
dt,

we finally obtain
∞∑

i=0

a2i
(2i + 1)2P2i(0)

r2i+3
= −

∫ γ

1
tg(t)T1(r, t)dt,

where
T1(r, t) =

1
r3t2

×
[ ∞∑

k=0

2∑

m=0

Mm+1(k)fk+2m

(
1
2
,
δ

t

)
hk

(
δ

r

)

+
{

Ã1f1

(
1
2
,
δ

t

)
+ Ã2f3

(
1
2
,
δ

t

)}{
1 + j

(
δ

r

)}]
,

with

hk

(
δ

r

)
=

(−δ)−k−1

(k + 1)!

×
∞∑

i=[k/2+1]

(2i + 1)2(−1)i(1
2)i(2i)!

(2i− 1− k)!i!

(
δ

r

)2i

,

j

(
δ

r

)
=

∞∑

i=1

(2i + 1)2(−1)i(1
2)i

i!

(
δ

r

)2i

.

Also,
∞∑

i=0

b2i+1
P ′

2i+1(0)
r2i+3

= −
∞∑

i=0

(−1)i(3
2)i

i!r2i+3

×
2i+1∑

k=0

(2i + 1)!(−δ)2i−k+1

(2i + 1− k)!k!
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×
∫ γ

1

g(t)
t

1∑

n=0

Nn+1(k)fk+2n

(
1
2
,
δ

t

)
dt.

If we change the order of summation in the above
equation, we get

∞∑

i=0

b2i+1
P ′

2i+1(0)
r2i+3

= −
∫ γ

1
tg(t)T2(r, t)dt,

where

T2(r, t) =
1

t2r3

∞∑

k=0

1∑

n=0

Nn+1(k)fk

(
3
2
,
δ

r

)

×fk+2n

(
1
2
,
δ

t

)
.

Thus finally the singular integral equation (2.17)
becomes

2
π

∫ γ

1
tg(t){R(r, t) + S(r, t)}dt = p(r),

1 ≤ r ≤ γ, (3.23)
where

S(r, t) = −π

2
{T1(r, t) + αT2(r, t)}.

When δ = 0, we briefly show that this equation
completely agrees with what Atsumi and Shindo
obtained. Using

lim
δ→0

h2k−1

(
δ

r

)
=

(−1)k(1
2)k(2k + 1)2

k!
1

r2k
,

lim
δ→0

f2k−1

(
1
2
,
δ

t

)
=

(−1)k−1(1
2)k−1

(k − 1)!
1

t2k−2
,

A = lim
δ→0

∞∑

k=0

2∑

m=0

Mm+1(k)fk+2m

(
1
2
,
δ

t

)
hk

(
δ

r

)

=
∞∑

k=1

(−1)k(1
2)k(2k + 1)2

k!r2k

× 1
(2k + 1)(2k + 2)

[
2k − 1
4k − 1

{
(4k + 1)G(k)

H(k)
+ 1

}

×F (k)
(−1)k−1(1

2)k−1

(k − 1)!
1

t2k−2

+(2k + 1)
{
−G(k)

H(k)
(2k − 1)2k

−(2k + 1)(4k + 5)(2α + 2k + 1)
H(k + 1)(4k + 3)

F (k + 1)

+
G(k − 1)
4k + 3

}
(−1)k(1

2)k

k!
1

t2k

+
(2k + 1)2(2k + 2)(2k + 3)(2α + 2k + 1)

H(k + 1)

×(−1)k+1(1
2)k+1

(k + 1)!
1

t2k+2

]
,

where 0

H(k) = α(4k + 1) + 4k(2k − 1),

G(k) = 2− α− 2k(2k + 3),
F (k) = −α + (2k − 1)2.

B = lim
δ→0

∞∑

k=0

1∑

n=0

Nn+1(k)fk

(
3
2
,
δ

r

)
fk+2n

(
1
2
,
δ

t

)

=
∞∑

k=1

(−1)k(3
2)k

k!r2k

[
−(2k + 1)(4k + 5)

2(k + 1)

×F (k + 1)
H(k + 1)

(−1)k(1
2)k

k!
1

t2k
−(4k + 3)(2k + 1)(2k + 3)

H(k + 1)

×(−1)k+1(1
2)k+1

(k + 1)!
1

t2k+2

]
+

1
2H(1)

{
−5F (1)+

9
t2

}
.

Thus

A + αB =
∞∑

k=1

(−1)k(1
2)k(2k + 1)
k!r2k

×
[
(−1)k(2k − 1)(2k + 1)

H(k)k(k + 1)

{
k(k + 1)F (k)

− 1
t2

1
4(4k + 3)

{(2k − 1)(4k + 3)2kG(k)

−H(k)G(k − 1)}
}

(1
2)k−1

(k − 1)!
1

t2k−2

+(−1)k F (k + 1)(2k + 1)
H(k + 1)(2k + 2)

{
(2k + 3)(2k + 2)

1
t2

+F (k+1)
4k + 5
4k + 3

}
(1
2)k

k!
1

t2k

]
+

α

2H(1)

{
9
t2
−5F (1)

}

=
∞∑

k=1

2(2k + 1)2

H(k)(k + 1)

{
k(k + 1)F (k)− 1

t2
1

4(4k + 3)

×{(2k − 1)(4k + 3)2kG(k)−H(k)G(k − 1)}
}

× 1
(rt)2k−2r2

(
(1
2)k

k!

)2

+
∞∑

k=2

F (k)
H(k)

{
(2k + 1)(2k − 1)

1
t2

+ F (k)
4k + 1
4k − 1

}
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×2k

(
(1
2)k

k!

)2 1
(rt)2k−2

+
α

2H(1)

{
−5F (1) +

9
t2

}
.

Using

Ã1f1

(
1
2
, 0

)
+ Ã2f3

(
1
2
, 0

)
= Ã1 − Ã2

1
2t2

,

we finally obtain

− 2
π

S(r, t) =
1 + ν

3
1

r3t2
+

∞∑

k=1

2
H(k)

[
2(2k + 1)2

(k + 1)r2

×
{

k(k + 1)F (k)− 1
t2

1
4(4k + 3)

{(2k− 1)(4k + 3)

×2kG(k)−H(k)G(k − 1)}
}

+ kF (k)
{

(2k + 2)

×(2k − 1)
1
t2

+ F (k)
4k + 1
4k − 1

}]

×
(

(2k − 1)!!
(2k)!!

)2 1
(rt)2kr

.

The above equation completely agrees with the
result by Atsumi and Shindo.

A quantity of physical interest is the stress in-
tensity factor which is given as

K = lim
r→γ+

√
2(r − γ)σzz(r, 0).

We choose p(r) = p0 and put γ − 1 = a. We let

r =
a

2
(s + 1) + 1, t =

a

2
(τ + 1) + 1, (3.24)

and in order to facilitate numerical analysis, as-
sume g(t) to have the following form:

g(t) = p0(t− 1)
1
2 (γ − t)−

1
2 G̃(t). (3.25)

With the aid of (3.24), g(τ) can be rewritten as

g(τ) = p0G̃(τ)
(

1 + τ

1− τ

) 1
2

. (3.26)

The stress intensity factors K can therefore be
expressed in terms of G̃(t) as

K/p0 =
√

2aG̃(γ), (3.27)

or in terms of the quantity actually calculated

K/p0

√
a =

√
2G̃(γ). (3.28)

4.Numerical analysis.

In order to obtain numerical solution of (3.23),
substitutions are made by the application of

(3.24) and (3.26) to obtain the following expres-
sion:

a

π

∫ 1

−1

(
1 + τ

1− τ

) 1
2

G̃(τ)
[
a

2
(τ + 1) + 1

]
[R(s, τ)

+S(s, τ)]dτ = 1, −1 < s < 1. (4.1)

The numerical solution technique is based on
the collocation scheme for the solution of singu-
lar integral equations given by Erdogan, Gupta,
and Cook [11]. 0 This amounts to applying a
Gaussian quadrature formula for approximating
the integral of a function f(τ) with weight func-
tion [(1+τ)/(1−τ)]

1
2 on the interval [-1,1]. Thus,

letting n be the number of quadrature points,

∫ 1

−1

(
1 + τ

1− τ

) 1
2

f(τ)dτ + 2π

2n + 1

n∑

k=1

(1+ τk)f(τk),

(4.2)
where

τk = cos
(

2k − 1
2n + 1

)
π, k = 1, . . . n. (4.3)

The solution of the integral equation is ob-
tained by choosing the collocation points:

si = cos
(

2iπ

2n + 1

)
, i = 1, . . . , n, (4.4)

and solving the matrix system for G∗(τk) :
n∑

k=1

[R(sj , τk) + S(sj , τk)]G∗(τk) =
2n + 1

2a
,

j = 1, . . . , n, (4.5)
where

G̃(τk) =
G∗(τk)

(1 + τk)[a2 (τk + 1) + 1]
. (4.6)

5.Numerical results and consideration.

Numerical calculations have been carried out
for ν = 0.3. The values of normalized stress
intensity factor K/p0

√
a versus a are shown in

Fig.1-3 for various values of δ.

Fig.1 shows the variation of K/p0
√

a with re-
spect to a when δ = 0.

This figure shows that as a increases, S.I.F.
decreases steadily.
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Fig.2 and 3 deal with the cases when δ = 0.3
and δ = 0.5, respectively. Here we omit units.
We can see that the trend is similar. Theoreti-
cally the infinite series involved converges when
δ < 1 by comparison test. However, because of

the overflow, computations could not be accom-
plished beyond the values δ > 0.5. And we found
that the variation of SIF is very small with re-
spect to the variation of δ.

0
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6.Penny-shaped crack.

In this section we are concerned with a penny-
shaped crack in a convex lens shaped elastic ma-
terial. The problem of determining the distri-
bution of stress in an elastic sphere containing
a penny-shaped crack or the mixed boundary
value problems concerning a spherical boundary
has been investigated by several researchers. Sri-
vastava and Dwivedi [12] considered the prob-
lem of a penny-shaped crack in an elastic sphere,
whereas Dhaliwal et al.[13] solved the problem of
a penny-shaped crack in a sphere embedded in an
infinite medium. On the other hand, Srivastav
and Narain [14] investigated the mixed boundary
value problem of torsion of a hemisphere.

7.Formulation of problem and reduction to
a Fredholm integral equation of the sec-
ond kind. 0 We employ cylindrical coordinates
(r, φ, z) with the plane z = 0 coinciding the plane
of the penny shaped crack. The center of the
crack is located at (r,z)=(0,0). As before, spher-
ical coordinates (ρ, θ, φ) are connected with the
cylindrical coordinates by

z = ρ cos θ, r = ρ sin θ.

Spherical coordinates (ζ, ϑ, φ) whose origin is at
z = −δ, r = 0, and is the center of the upper
spherical surface of the convex elastic body, is

also used. The elastic body is symmetrical with
respect to the plane z = 0.

The crack occupies the region z = 0, 0 ≤
r ≤ 1. The radius of the spherical portion is
ζ0 =

√
γ2 + δ2. The boundary conditions are:

On the plane z = 0, we want the continuity of
the shear stress, and the normal displacement:

uz(r, 0+)− uz(r, 0−) = 0, 1 ≤ r ≤ γ, (7.1)

σrz(r, 0+)−σrz(r, 0−) = 0, 0 ≤ r ≤ γ. (7.2)

And the crack is subjected to a known pressure
p(r), i.e.,

σzz(r, 0+) = −p(r), 0 ≤ r ≤ 1. (7.3)

On the surface of the spherical portion, stresses
are zero:

σζζ(ζ0, ϑ) = 0, (7.4)

σζϑ(ζ0, ϑ) = 0. (7.5)

We can make use of (2.6)-(2.9) also, for the
present case. The functions φ(1) and φ(2) for the
regions z > 0 and z < 0, respectively, are chosen
as follows:

φ(1)(r, z) = (2ν − 1)
∫ ∞

0
ξ−1A(ξ)J0(ξr)e−ξzdξ
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+
∞∑

n=0

anρnPn(cos θ), (7.6)

φ(2)(r, z) = (2ν − 1)
∫ ∞

0
ξ−1A(ξ)J0(ξr)eξzdξ

−
∞∑

n=0

an(−1)nρnPn(cos θ). (7.7)

Here the superscripts (1) and (2) are taken for
the region z > 0 and z < 0, respectively. The
functions ψ(1) and ψ(2) are chosen as follows:

ψ(1)(r, z) =
∫ ∞

0
A(ξ)J0(ξr)e−ξzdξ

+
∞∑

n=0

bnρnPn(cos θ), (7.8)

ψ(2)(r, z) = −
∫ ∞

0
A(ξ)J0(ξr)eξzdξ

+
∞∑

n=0

bn(−1)nρnPn(cos θ). (7.9)

Then we can immediately satisfy condition (7.2)
by these choice of functions (7.6)-(7.9).

Now the condition (7.1) requires
∫ ∞

0
A(ξ)J0(ξr)dξ = 0, r > 1. (7.10)

Equation (7.10) is automatically satisfied by
setting

A(ξ) =
∫ 1

0
g(t) sin(ξt)dt, g(0) = 0. (7.11)

Then from the boundary condition (7.3), we ob-
tain
∫ ∞

0
ξA(ξ)J0(ξr)dξ −

∞∑

n=0

a2n(2n)2P2n(0)r2n−2

−2(1− ν)
∞∑

n=0

b2n+1P
′
2n+1(0)r2n = −p(r),

0 ≤ r ≤ 1, (7.12)

where the prime indicates the differentiation
with respect to the argument. 0

By substituting (7.11) into (7.12), it reduces
to

g(t)− 2
π

∞∑

n=0

(−1)n{2nt2n−1a2n

+αb2n+1t
2n+1} = h(t), 0 ≤ r ≤ 1, (7.13)

where

h(t) = − 2
π

∫ t

0

rp(r)√
t2 − r2

dr.

The solution will be complete, if the condi-
tions on the surface of the spherical portion are
satisfied.

8.Conditions on the surface of the sphere.

Equation (7.13) gives one relation connecting
unknown coefficients an and bn. The stress com-
ponents besides (2.8) and (2.9) which are needed
for the present analysis are given by (3.1) and
(3.2). To satisfy boundary conditions on the
spherical surface, it is needed to represent φ, ψ
in (7.6)-(7.9) in terms of ζ, ϑ variables. To do so
we utilize the following formula in the Appendix
2. An expression useful for the present analysis
is the following

Pn(cos θ)ρn =
n∑

k=0

(
n
k

)
Pk(cosϑ)ζk(−δ)n−k.

(8.1)
Thus
∞∑

n=0

anPn(cos θ)ρn =
∞∑

n=0

an

∞∑

k=0

(
n
k

)
Pk(cosϑ)

×ζk(−δ)n−k =
∞∑

j=0

Pj(cosϑ)ζjAj , (8.2)

where

Aj =
∞∑

n=j

n!
(n− j)!j!

an(−δ)n−j . (8.3)

Also

− ∂

∂t

∫ ∞

0
ξ−1A(ξ)J0(ξr)e−ξzdξ

= −
∫ 1

0
g(t)

∫ ∞

0
J0(ξr) cos(ξt)e−ξzdξdt. (8.4)

0@IJTSRD— Available Online@www.ijtsrd.com—Volume-2—Issue-3—Mar-Apr 2018 Page:992



12INTERNATIONAL JOURNAL OF TREND IN SCIENTIFIC RESEARCH AND DEVELOPMENT(IJTSRD)ISSN:2456-6470

The inner integral of the above equation is∫ ∞

0
J0(ξr) cos(ξt)e−ξzdξ

= <
∫ ∞

0
J0(ξr)e−ξ(z+it)dξ

= < 1√
r2 + (z + it)2

= < 1√
r2 + z2 + 2zit− t2

= < 1

ρ
√

1− 2 cos θ(−it
ρ ) + (−it

ρ )2

=
1
ρ

∞∑

n=0

(
t

ρ

)2n

(−1)nP2n(cos θ). (8.5)

Thus finally, from (8.2), and using the for-
mula in Appendix, φ(1) can be written in terms
of spherical coordinates (ζ, ϑ) as

φ(1) =
∞∑

k=0

Pk(cosϑ)
[

Φk

ζk+1
+ Akζ

k

]
, (8.6)

where

Φk = −(α− 1)
[k/2]∑

n=0

k!
(2n)!(k − 2n)!

δk−2n

×(−1)n

∫ 1

0

g(t)t2n+1

2n + 1
dt. (8.7)

It is also necessary to express ψ(1) in terms of
spherical coordinates (ζ, ϑ). Now, as in (8.2)

∞∑

n=0

bnPn(cos θ)ρn =
∞∑

j=0

Pj(cosϑ)ζjBj , (8.8)

where

Bj =
∞∑

n=j

n!
j!(n− j)!

bn(−δ)n−j . (8.9)

0 We first express following integral in (ρ, θ) co-
ordinates∫ ∞

0
A(ξ)J0(ξr)e−ξzdξ =

∫ 1

0
g(t)dt

×
∫ ∞

0
sin(ξt)J0(ξr)e−ξzdξ. (8.10)

The inner integral on the right-hand side of
(8.10) is

−=
∫ ∞

0
J0(ξr)e−ξ(z+it)dξ

=
∞∑

n=0

P2n+1(cos θ)
ρ2n+2

(−1)nt2n+1. (8.11)

To express (8.11) in the (ζ, ϑ) spherical co-
ordinates, we use the following formula in the
Appendix 1.

P2n+1(cos θ)
ρ2n+1

=
∞∑

k=0

(2n + 1 + k)!
k!(2n + 1)!

×δk P2n+1+k(cosϑ)
ζ2n+2+k

. (8.12)

If we use (8.8) and (8.12), we get ψ(1) in spherical
coordinates (ζ, ϑ) as

ψ(1) =
∞∑

k=0

Pk(cosϑ)
(

Ψk

ζk+1
+ Bkζ

k

)
+ B0,

(8.13)
where

Ψk =
[(k−1)/2]∑

n=0

k!
(2n + 1)!(k − 2n− 1)!

δk−2n−1

×(−1)n

∫ 1

0
g(t)t2n+1dt. (8.14)

Then if we substitute these values of φ(1) and
ψ(1) given by (8.6) and (8.13) into (3.2), and
simplify the results by using the properties of
Legendre polynomials, from the condition that
on the spherical surface ζ = ζ0, σζϑ = 0, we
obtain the following equation

Ak+1kζk−1
0 −Bk+2ζ

k+1
0

α− (k + 2)2

2k + 5

−Bkζ
k−1
0

k(2α− k − 1)
2k + 1

− k + 3
ζk+4
0

Φk+1

−Ψk+2

ζk+4
0

(k + 3)(k + 2 + 2α)
2k + 5

+
Ψk

ζk+2
0

α− (k + 1)2

2k + 1

= 0. (8.15)

Likewise, from the condition σζζ(ζ0, ϑ) = 0,
we get the following equation,

−Ak+1k(k + 1)ζk−1
0
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+Bk+2ζ
k+1
0

(k + 2){2− α− (k − 1)(k + 2)}
2k + 5

+Bkζ
k−1
0

k(k + 1)(2α− k − 1)
(2k + 1)

−(k + 2)(k + 3)
ζk+4
0

Φk+1

−Ψk+2
(k + 2)(k + 3)(k + 2 + 2α)

ζk+4
0 (2k + 5)

−Ψk
(k + 1){(k + 4)(k + 1) + α− 2}

ζk+2
0 (2k + 1)
= 0. (8.16)

Thus if we multiply (8.15) by k + 1 and add
(8.16), from the resulting equation we find

Bk+2 =
(2k + 5)

ζk+1
0 {−α(2k + 3) + 2(k + 2)(k + 3)}

×
[
(k + 3)(2k + 3)

ζk+4
0

Φk+1

+Ψk+2
(2k + 3)(k + 3)(k + 2 + 2α)

ζk+4
0 (2k + 5)

+
Ψk

ζk+2
0

(k + 1)(k + 3)
]
. (8.17)

0 Using the relation

Φk+1 = −α− 1
k + 2

Ψk+2,

Bk+2 is

Bk+2 =
(2k + 5)

ζk+1
0 {−α(2k + 3) + 2(k + 2)(k + 3)}

×
[
Ψk+2

(2k + 3)(k + 3)((k + 3)2 − α)
ζk+4
0 (2k + 5)(k + 2)

+
Ψk

ζk+2
0

(k + 1)(k + 3)
]
. (8.18)

From (8.15) we have

Ak+3 =
Ψk

ζ2k+3
0

L(k) +
Ψk+2

ζ2k+5
0

M(k) +
Ψk+4

ζ2k+7
0

N(k),

where

L(k) = (k + 1)(k + 3)
(2α− k − 3)

H(k)
,

M(k) =
1

k + 2

[
(k + 3)

(2k + 3)(2α− k − 3)I(k)
(2k + 5)H(k)

+(k + 4)(k + 5)
G(k)

H(k + 2)
+

G(k + 2)
2k + 5

]
,

N(k) =
[

G(k)
H(k + 2)

(2k + 7)− 1
]

× (k + 5)I(k + 2)
(2k + 9)(k + 2)(k + 3)

,

with

H(k) = −α(2k + 3) + 2(k + 2)(k + 3),

G(k) = 2−α−(k+1)(k+4), I(k) = −α+(k+3)2.

Therefore using the formula in Theorem B of Ap-
pendix 4, we have

A =
∞∑

n=1

(−1)n2nt2n−1a2n

=
∞∑

n=1

(−1)n2nt2n−1 1
δ2n(2n)!

∞∑

k=2n

k!Akδ
k

(k − 2n)!

=
∞∑

k=2

[[k/2]∑

n=1

k!(−1)n

(2n− 1)!(k − 2n)!

(
t

δ

)2n 1
t

]

×Akδ
k =

∞∑

k=−1

fk(t)Ak+3 =
∞∑

k=−1

fk(t)

×
[

Ψk

ζ2k+3
0

L(k) +
Ψk+2

ζ2k+5
0

M(k) +
Ψk+4

ζ2k+7
0

N(k)
]
.

(8.19)
In the above equation Ψk = 0, if k ≤ 0 and

fk(t) = δk+3

[(k+3)/2]∑

n=1

(k + 3)!(−1)n

(2n− 1)!(k + 3− 2n)!

×
(

t

δ

)2n 1
t
.

If we substitute the values of Ψk into (8.19),it
reduces to

A =
∫ 1

0
g(u)Ω1(t, u)du,

where

Ω1(t, u) =
∞∑

k=−1

fk(t)
[
hk(u)
ζ2k+3
0

L(k)

+
hk+2(u)
ζ2k+5
0

M(k) +
hk+4(u)
ζ2k+7
0

N(k)
]
.
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In the above equation hk(u) = 0, if k ≤ 0 and

hk(u) = δk

[(k−1)/2]∑

n=0

(−1)nk!
(2n + 1)!(k − 2n− 1)!

×
(

u

δ

)2n+1

.

Also, using Theorem B of Appendix 4, we get
∞∑

n=0

(−1)nb2n+1t
2n+1 =

∞∑

n=0

(−1)n t2n+1

(2n + 1)!δ2n+1

×
∞∑

k=2n+1

k!Bkδ
k

(k − 2n− 1)!

=
∞∑

k=1

[[ k−1
2

]∑

n=0

(−1)nk!
(2n + 1)!(k − 2n− 1)!

(
t

δ

)2n+1]
Bkδ

k

=
∞∑

k=−1

hk+2(t)Bk+2

=
∞∑

k=−1

hk+2(t)
2k + 5

ζk+1
0 H(k)

[
Ψk

ζk+2
0

(k + 1)(k + 3)

+
Ψk+2

ζk+4
0

(k + 3)(2k + 3)
2k + 5

I(k)
]

=
∫ 1

0
g(u)Ω2(t, u)du,

0 where

Ω2(t, u) =
∞∑

k=−1

hk+2(t)
2k + 5

ζk+1
0 H(k)

[
hk(u)
ζk+2
0

(k + 1)

×(k + 3) +
hk+2(u)

ζk+4
0

(k + 3)(2k + 3)
2k + 5

I(k)
]
.

In the above equation hk(u) = 0, if k ≤ 0. Thus
(7.13) reduces to the following Fredholm integral
equation of the second kind

g(t) +
∫ 1

0
g(u)K(t, u)du = h(t),

where

K(t, u) = − 2
π
{Ω1(t, u) + αΩ2(t, u)}.

Appendix 1. Proof of (3.3). Since

ρ2 = (ζ cosϑ− δ)2 + (ζ sinϑ)2

= ζ2

{
1− 2 cos ϑ

δ

ζ
+

(
δ

ζ

)2}
,

1
ρ

=
1

ζ
√

1− 2 cos ϑ δ
ζ + ( δ

ζ )2
=

∞∑

n=0

Pn(cosϑ)
δn

ζn+1
,

Pn(cos θ)
ρn+1

=
(−1)n

n!
∂n

∂zn

(
1
ρ

)

=
∞∑

k=0

(−1)n

n!
∂n

∂zn

(
Pk(cosϑ)

ζk+1

)
δk

=
∞∑

k=0

(−1)n

n!
∂n+k

∂zn+k

(
1
ζ

)
(−1)k

k!
δk

=
∞∑

k=0

(
n + k

k

)
Pn+k(cosϑ)

ζn+k+1
δk.

Appendix 2. Proof of (3.16).

2πρnPn(cos θ) =
∫ π

−π
(z + ix cosu + iy sinu)ndu

=
∫ π

−π
(−δ + Z + ix cosu + iy sinu)ndu

=
n∑

k=0

n!
(n− k)!k!

(−δ)n−k

×
∫ π

−π
(Z + ix cosu + iy sinu)kdu

= 2π
n∑

k=0

n!
(n− k)!k!

(−δ)n−kζkPk(ϑ).

Appendix 3. Theorem A. If the equation

Bk =
k∑

i=0

k!
(k − i)!i!

ai,

is solved for a′is, it will be written as

ai =
i∑

k=0

i!
(i− k)!k!

Bk(−1)i−k.

Proof. We prove it by mathematical induction.
Suppose it is true for i, we will show that it is
also true for i + 1. Suppose Bi+1 is given by

Bi+1 =
i+1∑

k=0

(i + 1)!
(i + 1− k)!k!

ak = ai+1
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+
i∑

k=0

(i + 1)!
(i + 1− k)!k!

ak.

Thus

ai+1 = Bi+1 −
i∑

k=0

(i + 1)!
(i + 1− k)!k!

×
k∑

j=0

Bj
k!

j!(k − j)!
(−1)k−j

= Bi+1 −
i∑

j=0

Bj
(i + 1)!

j!

i∑

k=j

(−1)k−j

(i + 1− k)!(k − j)!
.

(A.1)
The inner summation in the above equation can
written as, by changing the variable k − j = m

i∑

k=j

(−1)k−j

(i + 1− k)!(k − j)!

=
i−j∑

m=0

(−1)m

(i + 1−m− j)!m!

= − (−1)i−j+1

(i− j + 1)!
,

0 since
i−j+1∑

m=0

(−1)m(i− j + 1)!
(i + 1−m− j)!m!

= (1− 1)i−j+1 = 0.

Then (A.1) is equal to

ai+1 = Bi+1 +
i∑

j=0

Bi(i + 1)!(−1)i+1−j

j!(i + 1− j)!

=
i+1∑

j=0

Bi(i + 1)!(−1)i+1−j

j!(i + 1− j)!
.

¤

Appendix 4. Theorem B. If the equation

Bk =
∞∑

n=k

(
n
k

)
(−δ)n−kan,

is solved for a′ns, it will be written as

an =
∞∑

k=n

(
k
n

)
δk−nBk.

Proof. Let
∞∑

n=0

an(−δ)nxn = f(x),

then
an(−δ)nn! = f (n)(0),

and

f (k)(1) =
∞∑

n=k

an(−δ)n n!
(n− k)!

= k!Bk(−δ)k.

From Taylor’s series

f(x) =
∞∑

k=0

f (k)(1)
k!

(x− 1)k.

Thus

an(−δ)nn! = f (n)(0) =
∞∑

k=0

f (k)(1)
k!

dn

dxn
(x−1)k

∣∣∣∣
x=0

=
∞∑

k=n

f (k)(1)
(k − n)!

(−1)k−n =
∞∑

k=n

Bk(−1)k−n(−δ)kk!
(k − n)!

.

Therefore

an =
∞∑

k=n

k!
n!(k − n)!

Bkδ
k−n.

¤
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