
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 4 | May-Jun 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID - IJTSRD23464 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 24

Toxic Comment Classification

Pallam Ravi, Hari Narayana Batta, Greeshma S, Shaik Yaseen

Anurag Group of Institutions, Telangana, India

How to cite this paper: Pallam Ravi |
Hari Narayana Batta | Greeshma S |
Shaik Yaseen "Toxic Comment
Classification" Published in
International Journal of Trend in
Scientific Research and Development
(ijtsrd), ISSN: 2456-
6470, Volume-3 |
Issue-4, June 2019,
pp.24-27, URL:
https://www.ijtsrd.c
om/papers/ijtsrd23
464.pdf

Copyright © 2019 by author(s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an Open Access article
distributed under
the terms of the
Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/
by/4.0)

ABSTRACT

Building a multi-headed model that's capable of detecting different types of
toxicity like threats, obscenity, insult and identity-based hate. Discussing things
you care about can be difficult. The threat of abuse and harassment online means
that many people stop expressing themselves and give up on seeking different
opinions. Platforms struggle to efficiently facilitate conversations, leading many
communities to limit or completely shut down user comments. So far we have a
range of publicly available models served through the perspective APIs,
including toxicity. But the current models still make errors, and they don't allow
users to select which type of toxicity they're interested in finding.

Keywords: toxic comment classification

1. INTRODUCTION

Discussing things you care about can be difficult. The threat
of abuse and harassment online means that many people
stop expressing themselves and give up on seeking different
opinions. Platforms struggle to evidently facilitate
conversations, leading many communities to limit or
completely shut down user comments.

2. MOTIVATION

So far we have a range of publicly available models served
through the Perspective API, including toxicity. But the
current models still make errors, and they don't allow users
to select which type of toxicity they're interested in finding.
(E.g. some platforms may be ne with profanity, but not with
other types of toxic content)

3. PROBLEM STATEMENT

Building a multi-headed model that's capable of detecting
different types of toxicity like threats, obscenity, insult and
identity-based hate.

4. DATASET

The dataset used was Wikipedia corpus dataset which was
rated by human raters for toxicity. The corpus contains
comments from discussions relating to use pages and
articles dating from 2004-2015. The dataset was hosted on
Kaggle.

5. DATA OVERVIEW

The dataset used was Wikipedia corpus dataset which was
rated by human raters for toxicity. The corpus contains
comments from discussions relating to use pages and
articles dating from 2004-2015. The dataset was hosted on
Kaggle.

The comments were manually classified into following
categories:
Toxic
Severe toxic
Obscene
Threat
Insult
Identity hate

6. APPROACH

6.1 HOW PROBABILITY WAS CALCULATED?

Though there many multi class classifiers, we do not have a
suitable multi label classier which was able to give
probability with which target belongs to a label.

So, we used scikit-learn OneVsRestClassier with various
estimators, with the help of predict_proba, we predicted the
probability with which a comment belongs to a particular
label.

IJTSRD23464

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23464 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 25

7. ANALYSIS OF DATASET
7.1 VISUALIZATION

7.1.1 COUNT THE NUMBER OF COMMENTS IN EACH

CLASS

Three major labels are:
toxic
obscene
insult

7.1.2 Pie chart of Label Distribution over comments

(without “none” category).

7.1.3 COUNT FOR EACH LABEL COMBINATION

Now, let's take a look at number of comment for each label
combination. This helps us in finding correlation between
categories.

Following can be inferred from above table:

The table shows that number of comments with only none
label are high.

Toxic which is the label high after none is present in all top 6
combinations.

Among the top combinations, obscene and insult comes 4
times in 6.

As the combinations increase the count drops very fast.

7.1.4 CORRELATION MATRIX

Following can be inferred from above matrix:

Toxic is highly correlated with obscene and insult.

Insult and obscene have highest correlation factor of 0.74

Interesting things to be observed:

Though, a severe toxic comment is also a Toxic comment, the
correlation between them is only 0.31.

8. FEATURE ENGINEERING

8.1 CLEANING THE COMMENTS

Since, the comments in the dataset were collected
from the internet they may contain 'HTML' elements in
them. So, we removed the

HTML

We then converted each comment into lower case and then
split it into individual words.

There were some words in the dataset which had length >
100, since there are no words in the English language whose
length > 100, we remove such words.

First, we tried building the features removing stop words
and then trained some models thinking that it may help the
model in learning the semantics of toxicity, but we found out
that the model learns better if there are stop words in the
comment.

Possible reason is, generally a hate/toxic comment is used
towards a person, seeing the data we found out that those
persons are generally referred by pronouns, which are
nothing but stop words.

8.2 STEMMERS AND LEMMATIZERS

1. Definitions:

Stemming usually refers to a crude heuristic process that
chops o the ends of words in the hope of achieving this goal
correctly most of the time, and often includes removal of
derivational affixes.

Lemmatization usually refers to doing things properly with
the use of a vocabulary and morphological analysis of words,
normally aiming to remove endings only and to return the
base or dictionary form of a word, which is known as the
lemma.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23464 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 26

2. Reasons to use:

We used both snowball stemmer, porter stemmer and
WordNet lemmatizer.

For grammatical reasons, documents are going to use
different forms of a word, such as organizes, organize
and organizing. But they all represent thesame semantics.
So, using stemmer/Lemmatizer for those three words gives a
single word, which helps algorithm learn better.

3. Results:

On public dataset:
Snowball > WordNet > Porter

On private dataset:
WordNet > Snowball > Porter

Decreasing order of accuracy.

8.3 VECTORIZATION

Python's scikit-learn deals with numeric data only. To
convert the text data into numerical form, tf-idf vectorizer is
used. TF-IDF vectorizer converts a collection of raw
documents to a matrix of Tf-idf features.

We set the predictor variable on the dataset with tf-idf
vectorizer, in two different ways. First, by setting the
parameter analyzer as 'word'(select words) and the second
by setting it to 'char'(select characters). Using 'char' was
important because the data had many 'foreign languages'
and they were di cult to deal with by considering only the
'word' analyzer.

We set the parameter n-gram range (an n-gram is a
continuous sequence of n-items from a given sample of text
or speech). After trying various values, we set the n-gram as
(1, 1) for 'word' analyzer and (1, 4) for 'char' analyzer. We
also set the max_features as 30000 for both word and char
analyzer after many trails.

We then combined the word and character features and
transformed the dataset into two sparse matrixes for train
and test sets, respectively using tf-idf vectorizer.

8.4 ADDING DATA RELATED FEATURES

We tried adding features to the dataset that are computed
from the data itself. Those features are:

Length of comments
Number of exclamation marks - Data showed severe toxic
comments with multiple exclamation marks.

Number of question marks
Number of punctuation symbols - Assumption is that angry
people might not use punctuation symbols.

Number of symbols - there are some comments with words
like f**k,

$#*t etc.

Number of words
Number of unique words - Data showed that angry
comments are some- times repeated many times.

Proportion of unique words

Conclusion: All the above features had correlation of <0.06
with all labels. So, we decided that adding these features
does not benefit the model.

9. MODEL BUILDING

Our basic pipeline consisted of count vectorizer or a tf-idf
vectorizer and a classifier. We used OneVsRest Classifier
model. We trained the model with Logistic Regression (LR),
Random Forest (RF) and Gradient Boosting (GB) classifiers.
Among them LR gave good probabilities with default
parameters. So, we then improved the LR model by changing
its parameters.

10. TRAINING, VALIDATION AND TEST METRICS

10.1 TRAINING AND VALIDATION SPLIT

To know whether was generalizable or not, we divided the
into train and validation sets in 80:20 ratio. We then trained
various models on the training data, then we ran the models
on validation data and we checked whether the model is
generalizable or not.

Also, we trained different models on training data and tested
those on validation data, then we arrived at our best model.

10.2 TEST METRIC

We used Receiver Operating Characteristic (ROC) along with
Area under the curve (AUC) as test metric.

10.3 RESULTS FOR VARIOUS MODELS

10.3.1 BASE MODEL:

We created a model without any preprocessing or parameter
tuning, we used this model as our model, and measured our
progress using this model.

For this we used Logistic Regression as Classifier.

1. Cross Validation Results

2. ROC-AUC Curve

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23464 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 27

10.3.2 Random Forest:

Next, we created our model using Random Forest. We used
n_estimators = 10 and random_state = 1 as parameters.
We observed the following results:

1. Cross Validation Results

2. ROC – AUC Curve

From the Cross Validation results table and ROC-AUC Curve,
it is clear that Random Forest performs poorly compared to
our base model itself, so we proceeded to tune parameters
for Logistic Regression for better accuracy.

10.3.3 LOGISTIC REGRESSION

I. We created one model using C = 4 as parameter. The
following results were observed.

1. Cross Validation Results

2. ROC –AUC Curve

II. We created another Logistic Regression by selecting the
best parameters by cross - validating the following
parameters.

3. Cross Validation Results

4. ROC – AUC Curve

Though, (i) gave better score compared to (ii) on validation
set, with difference in order of 0.0001. When run on the
actual data (ii) was found to better than (i).

11. CONCLUSION

After checking the kaggle discussion board of the actual
competition, standard Machine Learning approaches yield a
maximum score of 0.9792, irrespective of any approach. In
order to get a large margin over this score one has to employ
Deep Learning (DL) techniques.

12. REFERENCES

[1] https://blog.citizennet.com/blog/2
012/11/10/random-forests-ensembles-and-performa

[2] https://www.data-to-viz.com/

[3] https://www.kaggle.com/jagangupt a/stop-the-s-toxic-
comments-eda

