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ABSTRACT

The present paper is particularly exhibits about the
derive results of a third-order singular multipoint
boundary value problem at resonance using coindence
degree arguments.
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INTRODUCTION

This paper derive the existence for the third-order
singular multipoint boundary value problem at
resonance of the form

u” = g@),u®),u'@®),u"(®)) + h(t)
u'(0) =0,u"(0) =0,

m-—3

u(l) = \/ azb; u(gij),

ij=1

Where g : [0,1] X R* = R is caratheodory’s function
(i.e., for each (u,v) € R* the function g(.,u,v) is
measurable on [0,1]; for almost everywhere t € [0,1],
the function g(t,.,.) is continuous on Rz). Let
¢; €(01),i,j=12,..,m=3, and V{"Z}ab =
1, where g and & have singularity at z=1.

In [1] Gupta et al. studied the above equation when g
m-—3

and h have no singularity and V;;-7 a;b; # 1. They
obtained existence of a C1[0,1] solution by utilizing
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Letay-Schauder continuation principle. These results
correspond to the nonresonance case. The scope of
this article is therefore to obtained the survive results
when V;’};‘i a;b; =1 (the resonance case) and when
g and h have a singularity at t = 1.

Definition 1

Let U and W be real Banach spaces. One says that the
linear operator L:dom L c U - W is a Fredholm
mapping of index zero if Ker L and W /Im L are of
finite dimension, where Im L denotes the image of L.

Note

We will require the continuous projections P:U — U,
Q:W — W such that Im P = Ker L.Ker Q = Im L,
U=Ker L® Ker P, W=Im L& Im Q,
Llgomr nkerp : dom L N ker P » Im L lis an
isomorphism.

Definition 2

Let L be a Fredholm mapping of index zero and Q a
bounded open subset of U such that dom

LNQ # ¢. The map M: U —» W is called L-compact
on Q, if the map QN (Q) is bounded and Rp(I — Q) is
compact, where one denotes by Rp : Im L —

dom L N Ker P the generalized inverse of L. In
addition M is L-completely continuous if it L-compact
on every bounded Q c U.
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Theorem 1

Let L be a Fredholm operator of index zero and let N
be L-compact on Q. Assume that the following
conditions are satisfied :

(1) Lu # kMu for every (u, k) €

[(dom L\ Ker L) n dk] x (0,1).
(i1) Mu ¢ Im L, for every u € Ker L N Ok.
(iii)  deg (QM|ker L nax, kK N Ker L,0) = 0,

with Q: W — W being a continuous projection such
that Ker Q = Im L. then the equation Lu = Mu has at
least one solution in dom L N Q.

Proof :

We shall make use of the following classical spaces,
c[o0,1],c*[0,1],C?[0,1], L*[0,1], L2[0,1],

and L*[0,1]. Let AC[0,1] denote the space of all
absolute continuous functions on [0,1], AC*[0,1] =
fu€ C2[01] : u'(t) € AC[0,1]}, L},.[0,1] =
{u:ul[o,d] € L'[0,1 }for every compact interval

[0,d] < [0,1].
ACioc[0,1) = {u:ulpp 4 € AC[0,1]}.

Let U be the Banach space defined by

U={ue€lLl[0,1]:(1-t>u(t) € L'[0,1]},

With the norm

1
vl = f (1= €2 |v(6)]dt.

Let U be the Banach space

U = {u€ C2[0,1):u € C[0,1], lim,_- (1 —
t2)u" exists},

With the norm

(1- tz)u”(t)”w}.
(1)

I, = max{ lfull.., |

Where |[ull. = sup¢epo,17lu(t)] .

We denote the norm in L*[0,1] by ||. ||;. we define the
linear operator L:dom L c U - W by

Lu=1u"(t), (2)

Where
domL=<{u€eU: u(0)=0,u"(0)=0,u(l)
m-3
= \/ aibju(C)}
ij=1

And M:U — W is defined by
Lu =g (t,u(®),u'(),u"(®)) + h(®).
3)
Then boundary value problem (1) can be written as
Lu = Nu.
Therefore L = N.
Lemma

If V"3 a;b; = 1 then

) Ker L ={u € dom L:u(t) =c,c ER,t €
[0,1]}

- Vv EZ:

(ii) ImL:{VU 3a lbf f f v(g)des—O}

(iii)

L:domL cU->Wisa Fredholm operator
Q:W — W can be defined by

pt megs 1 1 ps
= \/ aibjf f f v(e)deds,
ij=1 i 7670

4)
Where
m-—3
h = \/aibj[e+(i+(j—e€i—e€f—1]
ij=1
(iv)  The linear operator R,: Im L: —
dom L N Ker P can be defined as
1 1 ,s
o= | | [vde  ©
i V¢j 70
(V) ||va||U < |lv|ly forall v e W.
Proof :

(1) It is obvious that
Ker L = {u € dom L:u(t) =
c,c € R}
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(i1) We show that
ImL =
veW:
{vzr;-;i aib [, J; Iy v(e)deds = 0}- @
To do this, we consider the problem

w"(t) = v(t) 8)

And we show that (5) has a solution w(t) satisfying

m-3
w'(0) =0, w'(0) = 0,w(®) = \/ abw(¢))
ij=1
If and only if
m-3 1 1 s
\/ al-bjf f f v(e)deds = 0
ij=1 i 76 -0
€))
Suppose (3) has a solmution w(t) satisfying
m-—3
w'(0) = 0, w'(0) = 0,w(®) = \/ aibw((g))
ij=1

Then we obtain from (5) that

w(©) =w() + [ j; f v(0)dds,

(10)
And applying the boundary conditions we get

m-3 1 1 ps
\/aibjf f fv(g)dgds
ij=1 i 7€ 70

:ijl st(g)dgds, (11)

Since Vm-fl a;b; = 1, and using (i) and we get

m-3 1 1 ps
\/aibjf f fv(g)dgdszO
ij=1 i 7€ 70

On the other hand if (6) holds, let u, € R; then

w() =w(©) + | L f v(e)deds,

Where v € Z
w(t) = v(t) (12)

(iii))  For v € Z, we define the projection Qv as

ot m-3 1 1 ps
Qv = - \/ aibj] J f v(o)dods,
ij=1 i 7670

t €0,1], (13)
Where
m-3
h = \/aibj[e+(i+{j—e{i—e§f—1] * 0.
i,j=1

We show that Q: W — W is well defined and
bounded.

m-3 1
lef]

Qv(e)] < \/1|ai||b]-| 0[(1 — )2 |v(s)lds

Lj=
m-3
1 t
= \/ lal b [l led
ij=1

1
10vllw < ] (1 - 02 1Qu()|de
0
m-—3 1
1 t 2
<o \Vlallbl Ivhletl [ -2 as
i,j=1 0

m-—3
1 t
=7 \/ lad by Wvllwliet
ij=1

In addition it is easily verified that
Q%v =Qu,vEeW. (14)

We therefore conclude that Q: W — W is a projection.
If v € Im L, then from (6) Qu(t) = 0. Hence

ImL < Ker Q. Letv; = v — Qv ;thatis, v, €

Ker Q. Then
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m-3 1 1 ps
\/aibjf f fvl(g)dgds
ij=1 i V¢ 70
m-3 1 01 s
= \/aibjf f fv(g)dgds
ij=1 i 7670
177 (11 ops
—Z\/f f fv(g)dgds
ij=1"% "¢ -0

Here 7 = 0 we get

m=3 1 1 ps
\/aibjj f fvl(g)dgds
ij=1 i 7¢ 70
m-3 1 1 s
= \/aibjf f fv(g)dgds
ij=1 i 7¢; 70

Therefore v; = v.

Thus v; € Im L and therefore Ker Q < I'm L and
hence

W=ImL+ImQ=ImL+R.

It follows that since Im L N R = {0}, then W =
ImL & Im Q.

Therefore,
dimKer L =dimImQ = dimR = codimIm L = 1.

This implies that L is Fredholm mapping of index
Zero.

(iv)  Wedefine P : W - W by

Pu = u(0), (15)

And clearly P is continuous and linear and P?u =
P(Pu) = Pu(0) = u(0) = Pu and Ker P =

fueU:u(0) =0} We now show that the

generalized inverse Kp = Im L - dom L N Ker P of

L is given by

Rov= | J [ verae

For v € Im L we have

(16)

(LRp)v() = [(Ryv)(®)] =v(®) (17)

And for u € dom L N Ker P we know that

(Re L u(® = | 1 L 1 f W (o)deds

t
= J.(t —-s)u'ds (18)
0

=u(t) —u'(0) t —u(0) = u(t)
Sinceu € dom L N Ker P,u(0) = 0, and Pu = 0.

This shows that Rp = (L|gom Loker p) -

@ IRy, < maxeeoq [yt — )2Iv(s)lds

< f(t —5)?|v(s)|ds

< llvllw.

We conclude that
IRl < lIvll,
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