Singular Third-Order Multipoint Boundary Value Problem at Resonance

G. Pushpalatha
Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

S. K. Reka
Research Scholar, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

Abstract

The present paper is particularly exhibits about the derive results of a third-order singular multipoint boundary value problem at resonance using coindence degree arguments.

Keywords: The present paper is particularly exhibits about the derive results of a third-order |singular multipoint boundary value problem at resonance using coindence degree arguments.

\section*{INTRODUCTION}

This paper derive the existence for the third-order singular multipoint boundary value problem at resonance of the form $$
\begin{gathered} \left.u^{\prime \prime \prime}=g(t), u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)+h(t) \\ u^{\prime}(0)=0, u^{\prime \prime}(0)=0, \\ u(1)=\bigvee_{i, j=1}^{m-3} a_{i} b_{j} u\left(\varsigma_{i j}\right) \end{gathered}
$$

Where $g:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is caratheodory's function (i.e., for each $(u, v) \in \mathbb{R}^{2}$ the function $g(., u, v)$ is measurable on $[0,1]$; for almost everywhere $t \in[0,1]$, the function $g(t, . .$.$) is continuous on \mathbb{R}^{2}$). Let $\varsigma_{i j} \in(0,1), i, j=1,2, \ldots, m-3$, and $\mathrm{V}_{i, j=1}^{m-3} a_{i} b_{j}=$ 1 , where g and h have singularity at $t=1$.

In [1] Gupta et al. studied the above equation when g and h have no singularity and $\bigvee_{i, j=1}^{m-3} a_{i} b_{j} \neq 1$. They obtained existence of a $C^{1}[0,1]$ solution by utilizing

Letay-Schauder continuation principle. These results correspond to the nonresonance case. The scope of this article is therefore to obtained the survive results when $\mathrm{V}_{i, j=1}^{m-3} a_{i} b_{j}=1$ (the resonance case) and when g and h have a singularity at $t=1$.

Definition 1

Let U and W be real Banach spaces. One says that the linear operator $L: \operatorname{dom} L \subset U \rightarrow W$ is a Fredholm mapping of index zero if $\operatorname{Ker} L$ and $W / \operatorname{Im} L$ are of finite dimension, where $\operatorname{Im} L$ denotes the image of L.

Note

We will require the continuous projections $P: U \rightarrow U$, $Q: W \rightarrow W$ such that $\operatorname{Im} P=\operatorname{Ker} L, \operatorname{Ker} \mathrm{Q}=\operatorname{Im} \mathrm{L}$, $U=\operatorname{Ker} \quad \mathrm{L} \oplus \quad$ Ker $\quad P, \quad W=\operatorname{Im} \quad \mathrm{L} \oplus \quad \operatorname{Im} \quad \mathrm{Q}$, $\left.L\right|_{\text {dom } L \cap \operatorname{Ker} P}$: dom $L \cap$ ker $P \rightarrow \operatorname{Im} L$ Iis an isomorphism.

Definition 2

Let L be a Fredholm mapping of index zero and Ω a bounded open subset of U such that dom $L \cap \Omega \neq \phi$. The map M: $U \rightarrow W$ is called L-compact on $\overline{\boldsymbol{\Omega}}$, if the map $Q N(\bar{\Omega})$ is bounded and $R_{P}(I-Q)$ is compact, where one denotes by $R_{P}: \operatorname{Im} L \rightarrow$ $\operatorname{dom} L \cap \operatorname{Ker} P$ the generalized inverse of L. In addition M is L-completely continuous if it L-compact on every bounded $\Omega \subset U$.

Theorem 1

Let L be a Fredholm operator of index zero and let N be L-compact on $\bar{\Omega}$. Assume that the following conditions are satisfied:
(i) $L u \neq \kappa M u$ for every $(u, \kappa) \in$ $[(\operatorname{dom} L \backslash \operatorname{Ker} L) \cap \partial \kappa] \times(0,1)$.
(ii) $\quad M u \notin \operatorname{Im} L$, for every $u \in \operatorname{Ker} L \cap \partial \kappa$.
(iii) $\operatorname{deg}\left(\left.Q M\right|_{\text {Ker } L \cap \partial \kappa}, \kappa \cap \operatorname{Ker} L, 0\right) \neq 0$,
with $Q: W \rightarrow W$ being a continuous projection such that $\operatorname{Ker} Q=\operatorname{Im} L$. then the equation $L u=M u$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.

Proof :

We shall make use of the following classical spaces, $C[0,1], C^{1}[0,1], C^{2}[0,1], L^{1}[0,1], L^{2}[0,1]$,
and $L^{\infty}[0,1]$. Let $A C[0,1]$ denote the space of all absolute continuous functions on $[0,1], A C^{1}[0,1]=$ $\left\{u \in C^{2}[0,1]: u^{\prime \prime}(t) \in A C[0,1]\right\}, L_{l o c}^{1}[0,1]=$ $\left\{u:\left.u\right|_{[0, d]} \in L^{1}[0,1]\right\}$ for every compact interval $[0, d] \subseteq[0,1]$.

$$
A C_{l o c}[0,1)=\left\{u:\left.u\right|_{[0, d]} \in A C[0,1]\right\}
$$

Let U be the Banach space defined by

$$
U=\left\{u \in L_{l o c}^{1}[0,1]:\left(1-t^{2}\right) u(t) \in L^{1}[0,1]\right\},
$$

With the norm

$$
\|v\|_{u}=\int_{0}^{1}\left(1-t^{2}\right)|v(t)| d t .
$$

Let U be the Banach space
$U=\left\{u \in C^{2}[0,1): u \in C[0,1], \lim _{t \rightarrow 1^{-}}(1-\right.$ $\left.t^{2}\right) u^{\prime \prime}$ exists $\}$,
With the norm

$$
\begin{equation*}
\|u\|_{u}=\max \left\{\|u\|_{\infty},\left\|\left(1-t^{2}\right) u^{\prime \prime}(t)\right\|_{\infty}\right\} . \tag{1}
\end{equation*}
$$

Where $\|u\|_{\infty}=\sup _{t \in[0,1]}|u(t)|$.
We denote the norm in $L^{1}[0,1]$ by $\|$. $\|_{1}$. we define the linear operator $L: \operatorname{dom} L \subset U \rightarrow W$ by

$$
\begin{equation*}
L u=u^{\prime \prime \prime}(t) \tag{2}
\end{equation*}
$$

Where

$$
\begin{gathered}
\operatorname{dom} L=\left\{u \in U: u^{\prime}(0)=0, u^{\prime \prime}(0)=0, u(1)\right. \\
\left.=\bigvee_{i, j=1}^{m-3} a_{i} b_{j} u(\varsigma)\right\}
\end{gathered}
$$

And $M: U \rightarrow W$ is defined by

$$
\begin{equation*}
L u=g\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t)\right)+h(t) \tag{3}
\end{equation*}
$$

Then boundary value problem (1) can be written as

$$
L u=N u .
$$

Therefore $L=N$.

Lemma

If $\bigvee_{i, j=1}^{m-3} a_{i} b_{j}=1$ then
(i) $J \subset \operatorname{Ker} L=\{u \in \operatorname{dom} L: u(t)=c, c \in \mathbb{R}, t \in$ $[0,1]\}$;
$\operatorname{Im} L=\left\{\begin{array}{ll}V_{i, j=1}^{m-3} & \begin{array}{l}v \in z: \\ a_{i} b_{j}\end{array} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s=0\end{array}\right\}$
(iii) $L: \operatorname{dom} L \subset U \rightarrow W$ is a Fredholm operator $Q: W \rightarrow W$ can be defined by

$$
\begin{equation*}
Q v=\frac{e^{t}}{h} \bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s, \tag{4}
\end{equation*}
$$

Where

$$
h=\bigvee_{i, j=1}^{m-3} a_{i} b_{j}\left[e+\zeta_{i}+\zeta_{j}-e^{\zeta_{i}}-e^{\zeta_{j}}-1\right]
$$

(iv) The linear operator $R_{p}: \operatorname{Im} L: \rightarrow$ $\operatorname{dom} L \cap \operatorname{Ker} P$ can be defined as

$$
\begin{equation*}
R_{p}=\int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho \tag{5}
\end{equation*}
$$

(v) $\left\|R_{p} v\right\|_{U} \leq\|v\|_{W}$ for all $v \in W$.

Proof:

(i) It is obvious that
$\operatorname{Ker} L=\{u \in \operatorname{dom} L: u(t)=$ $c, c \in \mathbb{R}\}$.
(ii) We show that
$\operatorname{Im} L=$
$\left\{\begin{array}{c}v \in W: \\ \bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s=0\end{array}\right\}$.
To do this, we consider the problem

$$
\begin{equation*}
w^{\prime \prime \prime}(t)=v(t) \tag{8}
\end{equation*}
$$

And we show that (5) has a solution $w(t)$ satisfying

$$
w^{\prime \prime}(0)=0, w^{\prime}(0)=0, w(t)=\bigvee_{i, j=1}^{m-3} a_{i} b_{j} w\left(\zeta_{i} \zeta_{j}\right)
$$

If and only if

$$
w(t)=w(0)+\int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s
$$

Where $v \in Z$

$$
\begin{equation*}
w^{\prime \prime \prime}(t)=v(t) \tag{7}
\end{equation*}
$$

(iii) For $v \in Z$, we define the projection $Q v$ as

$$
Q v=\frac{e^{t}}{h} \bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s,
$$

Where

$$
h=\bigvee_{i, j=1}^{m-3} a_{i} b_{j}\left[e+\zeta_{i}+\zeta_{j}-e^{\zeta_{i}}-e^{\zeta_{j}}-1\right] \neq 0
$$

$$
\bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s=0
$$

Suppose (3) has a solmution $w(t)$ satisfying

$$
\begin{equation*}
|Q v(t)| \leq \frac{\left|e^{t}\right|}{|h|} \bigvee_{i, j=1}^{m-3}\left|a_{i}\right|\left|b_{j}\right| \int_{0}^{1}(1-s)^{2}|v(s)| d s \tag{9}
\end{equation*}
$$

$$
w^{\prime \prime}(0)=0, w^{\prime}(0)=0, w(t)=\bigvee_{i, j=1}^{m-3} a_{i} b_{j} w\left(\zeta_{i} \zeta_{j}\right)
$$

Then we obtain from (5) that

$$
w(t)=w(0)+\int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s
$$

And applying the boundary conditions we get

$$
\begin{align*}
\bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} & \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s \\
& =\int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s \tag{11}
\end{align*}
$$

Since $\bigvee_{i, j=1}^{m-3} a_{i} b_{j}=1$, and using (i) and we get

$$
\bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s=0
$$

On the other hand if (6) holds, let $u_{0} \in \mathbb{R}$; then

$$
\begin{align*}
& \text { ientific } 1{ }^{|h|} \bigvee_{i, j=1}^{m-3}\left|a_{i}\right|\left|b_{j}\right|\|v\|_{W}\left|e^{t}\right| \tag{10}\\
& \text { and } \\
& \quad\|Q v\|_{W} \leq \int_{0}^{1}(1-t)^{2}|Q v(t)| d t \\
& 470 \\
& \leq \frac{1}{|h|} \bigvee_{i, j=1}^{m-3}\left|a_{i}\right|\left|b_{j}\right|\|v\|_{W}\left|e^{t}\right| \int_{0}^{1}(1-s)^{2} d s
\end{align*}
$$

$$
=\frac{1}{|h|} \bigvee_{i, j=1}^{m-3}\left|a_{i}\right|\left|b_{j}\right|\|v\|_{W}\left\|e^{t}\right\|_{W}
$$

In addition it is easily verified that

$$
Q^{2} v=Q v, v \in W
$$

We therefore conclude that $Q: W \rightarrow W$ is a projection. If $v \in \operatorname{Im} L$, then from (6) $Q v(t)=0$. Hence $\operatorname{Im} L \subseteq \operatorname{Ker} Q$. Let $v_{1}=v-Q v$; that is, $v_{1} \in$ Ker Q. Then

$$
\begin{align*}
\bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} & \int_{0}^{s} v_{1}(\varrho) d \varrho d s \tag{17}\\
& =\bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s \\
& -\frac{1}{h} \bigvee_{i, j=1}^{m-3} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s
\end{align*}
$$

$$
\left(L R_{P}\right) v(t)=\left[\left(R_{p} v\right)(t)\right]^{\prime \prime}=v(t)
$$

Here $h=0$ we get

$$
\begin{aligned}
& \bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \\
& \int_{0}^{s} v_{1}(\varrho) d \varrho d s \\
&=\bigvee_{i, j=1}^{m-3} a_{i} b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho d s
\end{aligned}
$$

And for $u \in \operatorname{dom} L \cap \operatorname{Ker} P$ we know that

$$
\begin{aligned}
\left(R_{P} L\right) u(t) & =\int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} u^{\prime \prime}(\varrho) d \varrho d s \\
& =\int_{0}^{t}(t-s) u^{\prime \prime} d s
\end{aligned}
$$

$$
=u(t)-u^{\prime}(0) t-u(0)=u(t)
$$

Since $u \in \operatorname{dom} L \cap \operatorname{Ker} P, u(0)=0$, and $P u=0$.
This shows that $R_{P}=\left(\left.L\right|_{\text {dom LnKer } P}\right)^{-1}$.

$$
\text { (v) }\left\|R_{p} v\right\|_{\infty} \leq \max _{t \in[0,1]} \int_{0}^{t}(t-s)^{2}|v(s)| d s
$$

Therefore $v_{1}=v$.
Thus $v_{1} \in \operatorname{Im} L$ and therefore $\operatorname{Ker} Q \subseteq \operatorname{Im} L$ and hence

$$
W=\operatorname{Im} L+\operatorname{Im} Q=\operatorname{Im} L+\mathbb{R}_{\mathrm{C}}
$$

It follows that since $\operatorname{Im} L \cap \mathbb{R}=\{0\}$, then $W=$ $\operatorname{Im} L \oplus \operatorname{Im} Q$.

Therefore, $\operatorname{dim} \operatorname{Ker} L=\operatorname{dim} \operatorname{Im} Q=\operatorname{dim} \mathbb{R}=\operatorname{codim} \operatorname{Im} L=1$.

This implies that L is Fredholm mapping of index zero.
(iv) We define $P: W \rightarrow W$ by

$$
\begin{equation*}
P u=u(0) \tag{15}
\end{equation*}
$$

And clearly P is continuous and linear and $P^{2} u=$ $P(P u)=P u(0)=u(0)=P u \quad$ and $\quad \operatorname{Ker} P=$ $\{u \in U: u(0)=0\}$. We now show that the generalized inverse $K_{P}=\operatorname{Im} L \rightarrow \operatorname{dom} L \cap \operatorname{Ker} P$ of L is given by

$$
\begin{equation*}
R_{p} v=\int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho) d \varrho \tag{16}
\end{equation*}
$$

For $v \in \operatorname{Im} L$ we have

$$
\leq \int_{0}^{t}(t-s)^{2}|v(s)| d s
$$

$$
\leq\|v\|_{w} .
$$

We conclude that

$$
\left\|R_{p} v\right\|_{W} \leq\|v\|_{W} .
$$

References

[1] Gupta C.P, Ntouyas S.K, and Tsamatos P.C, "Solvability of an m-point boundary value problem for second order ordinary differential equations," Journal of Mathematical Analysis and Applications, vol. 189, no. 2, pp. 575-584, 1995.
[2] Ma R and O'Regan D, "Solvability of singular second order m-point boundary value problem," Journal of Mathematical Analysis and Applications, vol. 301, no. 1, pp. 124-134, 2005.
[3] Infante G, and Zima M.A, "Positive solutions of multi-point boundary value problems at resonance," Nonlinear Analysis: Theory, Methods and
Applications, vol. 69, no. 8, pp. 2458-2465, 2008.
[4] Kosmatov N, "A singular non-local problem at resonance," Journal of Mathematical Analysis and Applications, vol. 394, no. 1, pp. 425-431, 2012.

