

# International Journal of Trend in Scientific Research and Development (IJTSRD)

# International Conference on Advanced Engineering and Information Technology (ICAEIT-2017)



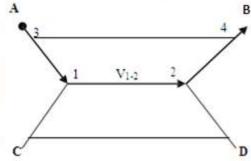
ISSN No: 2456 - 6470 | www.ijtsrd.com | Special Issue Publication

### Study of Road Maintenance Fund Needs Approach with Link Based and Network Based

**Tiopan H. M. Gultom, M. Tamrin, Fahrul Agus** Mulawarman University, Samarinda, East Borneo, Indonesia

#### **ABSTRACT**

Dynamical systems approach can describe the process of roads pavement damage and road maintenance funding allocation scenarios. One of the important thing to predict road maintenance fund needs in the future is how to estimate the traffic that is going through in each link on the road network. Currently there are two ways to forecast future traffic flow, first approaches by link based and the other is networkbased. Network-based approach requires data free flow speed of each link as an input. In dynamic, free flow speed is affected by the value of IRI (International Roughness Index). This paper aims to look at the differences total requirement of road maintenance funds need for each year in which the estimated future traffic flows by link-based and network-based. There are four scenarios allocation of maintenance funds in each year of analysis, ie 20%, 40%. 60% and 80% of the total requirement. From the analysis, it is known that the total funding need for road maintenance at the end of the estimated future traffic flows by way a network-based smaller when compared with the link based. In addition, it is known that the road maintenance fund allocation by 80% of the needs, it turns out the total funding need maintenance at the end of the analysis is the smallest.


**Keywords:** Link Based, Network Based, Free Flow Speed

#### 1. INTRODUCTION

Road maintenance needs can be measured quantitatively by considering rate of service standards to be achieved, but the allocation of road maintenance costs often do not have measurable criteria. Dynamic system is very useful to understand the relationship

between qualitative and quantitative aspects of road asset management. Dynamical systems approach can also describe the process of roads damage and scenarios of road maintenance funding allocation [1]. Saeidah Fallah doing research whose goal is to see road maintenance funds needs are dynamically, but the her research did not look the relationship between implementation of road maintenance delay to the amount of traffic.

One of the important thing to predict maintenance fund needs in the future is how to estimate the traffic in each link in the road network. Ministry of Public Works Directorate of Highways Indonesia generally use tools HDM (Highway Development and Managemen), this tool is very helpful in predicting deterioration model and estimated road maintenance fund needs and treatment scenarios. Both of these tools are introduced by Asian Development Bank dan World Bank in early 2000. Traffic estimation method used in both this tool is Linkbased approaches. In **Figure 1**, the movement of traffic on a road network is generally as described follows.



**Figure 1.** Schematic movement from C to B through link 1 - 2

Under normal conditions, traffic flow from C to B uses link 1-2, the total flow in sections 1-2 is V<sub>1-2</sub>. However, if in sections 1-2 decreased in performance due to road deterioration and the road can not be repaired immediately because of limited funds, so the speed in sections 1-2 become slower and then the travel time will increase. So flow in link 1-2 will reduce. Traffic flow that comes from C will choose a new route that can provide faster travel time, for example, using link 3-4 towards B. Consequently, the total traffic flow in link 3-4 will increase while in link 1-2 will reduce. Link-based method can not describe this problem. It takes survey traffic counting to validation traffic flow that has been forecasted in previous years. Consider this problem, to forecast future traffic flow becomes inaccurate if multiplying the present traffic with growth factors in link.

What if the traffic estimation method in link changed by using network-based approaches, where road users are assumed will be looking fastest travel time. This method requires information such as an Origin Destination Matrix (OD Matrix), zoning, road network map, the length of each road and width of the road. Needed OD matrix for each year of analysis, and the future of OD matrix resulted from base year OD matrix multiplied by Growth Factor, it is useful as a means for validation.

Both of these methods when used to estimate the road maintenance fund needs in the future will certainly be different, whether the link based method will give a total cost of road maintenance less than Network-Based approaches?.

#### 1.1. Research Purposes

The purpose of this paper area:

- a) Calculate traffic prediction in the link with linkbased approaches, calculate the estimated cost of road maintenance every year and find out the value of IRI at the end of the analysis.
- b) Calculate traffic in link that is dynamically change due to influenced by IRI with Network-based approaches, calculate the estimated cost of maintenance of roads each year and find out value of IRI at the end of the analysis
- c) Shows the difference in total cost of road maintenance needs, with the allocation of maintenance funds scripted 20%, 40%, 60% and 80% of the total annual cost of road maintenance. This scenario is applied to approaches Linkbased and Networkbased.

#### 1.2. Scope of study

This study has several limitations that are used when analyzing, are:

- a. Pavement type is a flexible pavement, and assumed the last maintenance done 2 years ago.
- b. Growth Factor method of link-based and Network- based method is 3%.
- c. The IRI being used in the link is the average IRI
- d. During the evaluation there is no addition of roads and increase capacity by adding lanes.
- e. Drainse on the road network is considered in good condition
- f. Traffic flow in the first year (2015) is the output of transport modeling with tools EMME-4.

#### 1.3. Research Methodology

In general, the research methodology is shown in Figure 2.

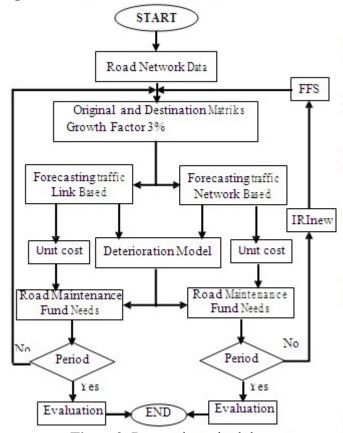



Figure 2. Research methodology

#### 2.1. Road network data

The road network data used in this study are the road network map in shp format and data link characteristics (length, width and the value of IRI).

## 2.2. Estimates Traffic with Link-based approaches

In the first year, traffic is the output transport modeling with tools EMME 4. Forecasting traffic for

next year, traffic on previous year multiplied by 3% as growth factor. The formula to estimate traffic in link-base approach is [3]:

$$2??????? = ???????? * (1 + ??)^{2}$$
......

Where:

22222222 = number of vehicles per day on link i in year n

222222220 = number of vehicles per day on link i in the first year

x = growth factor

n = years

#### 2.3. Estimates traffic with link-based approaches

Forecasting traffic flow with network-based approaches using transport modeling tools EMME-4. It takes a information matrix Origin Destination (OD Matrix), growth factors OD Matrix, maps road network, road width, and the free flow speed on each road. Growth factors OD Matrix is 3%.

Tamin said that the transport infrastructure network systems affect the movement of the system and vice versa<sup>[2]</sup>. Which differentiates it from link-based method compared to network-based is that the free flow speed is a function of IRI. While travel time is a function of free flow speed and travel time of the main things for road users to choose the sections that will be used. Roughness is unevenness of roads pavement surface, presented in a scale that describes unevenness of road surface. The International standard pavement roughness measurement is called IRI, the unit is m / km. The worse the road conditions would lead to reduced travel speeds on roads.

Sayers.et, al<sup>[3]</sup>. recommended value of the speed of some IRI values. Dwilaksono Toto doing research to see correlation between free flow speed and IRI in Java[4]. The correlation equation addressed in equation 2:

$$2 = 0.07472^2 - 3.41792 + 62.673 \dots 2$$

Where:

Y = free flow speed (km/jam)

X = average IRI in Link (m/km)

#### 2.4. Road Deterioration Model

There are two types of models that can be used to predict Road deterioration (RD) and Work Effects (WE)[5]:

Model Absoulut
Model Incremental

Absolute models predict pavement conditions at a particular point in time as a function of the independent variable, while the incremental models give the changing conditions of the initial conditions as a function of the independent variables. Both types of these models include the emperical models. Which means, these models are usually generated from the statistical analysis of the observations in the study of the trend of deterioration.

There are two types of deformation models distress, ie rutting and roughness. Rutting is defined as the accumulation of permanent deformation or not of overcoming traffic problem on the pavement, in the form of a tire tread groove within a certain time period[6]. There are four components of rutting, namely; initial densification, structural deformation, plastic deformation and wear form studded tires.

Roughness is defined as the deviation of the surface is completely flat with characteristics that affect the dynamic size vehicle, driving quality, load dynamics and surface drainage. Roughness model consists of several components, namely cracking, disintegration, deformation and maintenance.

In this study, the incremental roughness is calculated as a result of structural damage[7], the formula is:

$$\Delta$$
?????? = ??? \* ?(?\*K???\*??????) \* (1 + ?N????)^-5 \* ??4 .........3  
?NP?? = Max[(?NP? - ??N???) ; 1,5]

Where:

SNPKb = Adjustment Structural Numbers due to cracking at the end of year analysis

SNP<sub>a</sub> = Adjustment Structural Numbers due to cracking in the early years analysis

dSNPK = reduction in adjusted structural number of pavement due to cracking its value is 3.6

 $\Delta IRI_{S}=$  incremental change in roughness due to structural deterioration during the analysis year ( m/km, IRI)

YE4 = annual number of equivalent standard axles (millions/lane)

Kgm = calibration factor for environmental coefficient its value is 7

AGE3 = pavement age since last overlay (rehabilitation), reconstruction or new construction (tahun)

a0 = roughness coefficient structural components 134 m = environmental coefficient 0,025

$$I$$
2227 =  $I$ 2220 +  $\Delta I$ 2227 .....5

where:

IRI<sub>t</sub> = IRI at the end of year of analysis (m/km, IRI) IRI<sub>0</sub> = IRI at early year of analysis (m/km, IRI)

#### 2.5. Equivalent standard axle loads (ESAL)

This study has not validate the average weight of each class of vehicles passing through the road network of the study area. Therefore, using the Flexible Pavement Design Guidelines issued by the Ministry of Public Works Directorate General of Highways[8], where there are 8 classes of vehicles as shown Table 1.

**Tabel 1:** Vehicle Damage Faktor (VDF) for each class group

| No. | Type of Class                  | VDF Value |
|-----|--------------------------------|-----------|
| 1   | Passenger vehicles (Class 2)   | 0.0001    |
| 2   | Utility vehicles (Class 3 & 4) | 0.0030    |
| 3   | Small bus (Class 5A)           | 0.3000    |
| 4   | Big Bus (Class 5B)             | 1.0000    |
| 5   | small truck (Class 6A)         | 0.8000    |
| 6   | big truck (Class 6B)           | 1.6000    |
|     | Truck Trailers (Class 7A, 7B   |           |
| 7   | dan 7C)                        | 7.6000    |

#### 2.6. Annual axle loading

Total weight of the axle for a year (ESAL) is calculated by multiplying the value of VDF with the number of vehicles passing each group on link.

$$22A277 = \sum 365 * AA2277 * V227 * 10^{-6}$$
 ......6

Where:

ESALij = is the axle load during the i year in million

ESAL for vehicle class j

VDF<sub>j</sub> = Vehicle damage factor for vehicle class j

AADTij = Annual average daily traffic class j during the i year

#### 2.7. Treatment program

Type of treatment is determined how much the damage, assessment parameter is the value of IRI. **Appendix 1** showed parameters of road maintenance treatment based on the value of IRI.

#### 2.8. Unit Cost

Appendix 2 shown the unit price of each maintenance activity per line width. Unit price is obtained from the Directorate General of Highways for the price of 2015.

#### 2.9. Scenario allocated road maintenance fund

Road maintenance fund allocation scenarios for analysis with Link-Based and Network-Based approach are 20%, 40%, 60% and 80% of total road maintenance funds per each year. Due to limited funding, the roads that need to be addressed in the coming year chosen by considering the parameter value IRI, Cost, and AADT. Each segment is scored against all three parameters. Priority is determined based on the total scores of all three parameters.

Calculation of road Deterioration, selection of treatment and priority, and funding requirement of road maintenance against budgeting allocation scenario is using microsoft office-excel as a tool

#### 3. Data and analysis

Research area located in the province of Bali, this province was chosen because of its territory in the form of an island, therefore the traffic flow continuously from outside the region can be eliminated.

Implementation of regional autonomy to the district/city level, then published the Law of the Republic of Indonesia No. 38 of 2004, which is on the Way. There are settings that road authority; nationals roads, province's roads, county's road and city's road. Until now the technical information about the damage roads under authority of province, county's and city's is not as complete national's road, which is the authority of central government. Therefore, this research is still limited to the national road.

### 3.1. National road network map and matrix origin destination Bali's

This study uses a national road network map based on the Decree of the Minister of Public Works no. 248 / KPTS / M / 2015. The national road network map on Bali island in shp format is shown in Figure 3.

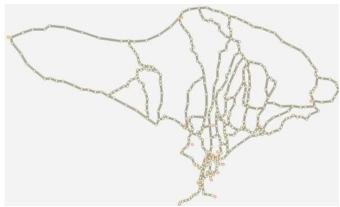



Figure3. National road network map in Bali Island

The number of zones in the study area is divided into 33 zones. Zoning divided by district and sub-district administration. In downtown Denpasar and Bangli is divided into several zones based on the subdistrict.

Origin and destination distribution in the base year (2011) is shown in appendix 3.

### 3.2. Road characteristics and AADT at early year (2015)

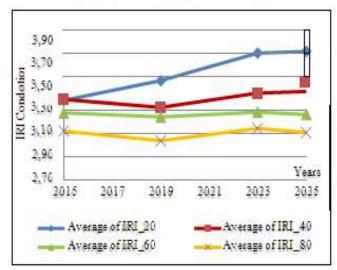
Characteristics of data used is length of road, average width of the road, average IRI, and AADT. This data is obtained from Agency that handles national roads on Bali island. Every 6 months the agency traffic measurement and national road conditions conducted. Traffic information on national roads is used to validate the movement model from 2011 to 2015. This paper does not discuss in more detail how to validate models and forecasting models with the EMME4 transport modeling program. Appendix 4 shown characteristic of national road on Bali island.

#### 4. Analysis

Analysis of road maintenance cost requirement with link based and network based approach for all national road network in Bali island. The analysis phase were traffic forecasting and then with various funding allocation scenarios calculated road maintenance fund need for each year.

## 4.1. Traffic forecasting with link-based approaches

Traffic forecast with Link-based approaches the way is multiply the growth factor to the existing traffic flow (see eq. 1). So for the next 10 years, the traffic forecasting are shown in Appendix 5. The traffic growth in each link is predicted 3% per year upto 2025.


### 4.2. Total road maintenance cost needs with link-based

From the results of Appendix 5, following the pattern of the calculation described in Figure 2 are used to determine the needs of road maintenance funds from 2015 to 2025 (detail see appendix 6).

Table 2: Total road maintenance cost needs with linkbased and benefit

| Type of Analysis | Total Cost (2015-2025) | Benefit   |
|------------------|------------------------|-----------|
| Linkbased_20     | 1.063.857,7            | 0         |
| Linkbased_40     | 528.738,2              | 535.119,5 |
| Linkbased_60     | 373.709,0              | 690.148,7 |
| Linkbased_80     | 330.619,5              | 733.238,2 |

Linkbased 20 and so on, meaning was analyzed by means of linkbased approach and allocation of cost maintenance every year is 20% of total cost maintenance needs of road network every year analysis. Simulation with multiple scenarios allocation of funds, it is known that the total cost of road maintenance needs until 2025 with an allocation of 20% of the total cost of road maintenance needs per year is Rp. 1.063.858.000.000. The condition of the road at the end of 2025 was deteriorating of the initial analysis (see Fig. 6). While if allocated funds amounting to 80% of the total requirement in each year, the total needs of the maintenance fund in 2015 until 2025 was Rp. 330.620.000.000,-. This number was not too significant losses than if allocated 60% of the requirement. This also applies to IRI, where allocations of 60% or 80% is not too large impact on improving the value of IRI



**Figure4.** IRI Condition per year by different allocation budget scenario with link-based analysis

Allocation road maintenance fund 20% of the total cost needs of each year, then at the end of 2025 the total cost of road maintenance bigger, other impact is the average value of IRI in the road network is greater than if the allocation of road maintenance funds increased to 40% of the total cost needs of each year. Figure 4 showed that there is a difference of each analysis at the end of 2025. This difference can be termed as an benefit for road managers. For road users, the advantage is travel speed undisrupted due to road damage, in the end there are savings in fuel consumption. The difference in total cost of road maintenance until 2025 in each year on the type of analysis is shown in Tabel 2. The differences can be a benefit for manager if allocation budget for maintenance bigger than it should be. Benefit from the allocation of 40% is the difference between the total cost of the allocation of 20% to the total cost of the allocation of 40%, thus permanently for all scenarios allocation.

#### 4.3. Traffic forecast with network based

In this approaches, the traffic flow forecasted does not based on growth traffic in link, but Origin Destination Matrix growth every year. Then, Matrix Origin Destination (OD Matrix) is charged on road network. Modeling of traffic flow on the road network using EMME-4, production by INRO Canada.

One of the outputs of the EMME-4 used are traffic flow in every link in each year. The next step is to calculate the number of vehicles by vehicle class and then calculated the total ESAL (see Table 1 and equation 6).

Damage incremental in each link as a result of total ESAL, incremental damage in each segment as a result of total ESAL, calculated using equation 2, then at the end of n year predicted value of IRI (see eq. 5) and the total funding of road maintenance needs in year n. Due to allocation of funds scripted always less than needed, then there is a process of evaluation of priority roads will be maintained, Once selected, a new IRI value used to calculate the free flow speed at the beginning of year n + 1 using **equation 2**. This free flow speed information becomes the input current road network modeling with EMME-4 in the year n + 1, and so on.

As a result, there are differences in total traffic flow in link, that is calculated by link-based approaches and Network-based. Appendix 7 shown the

differences. The differences around 5%, traffic forecasting with link- based higher than network-based.

### 4.4. Total road maintenance cost needs with network-based

Following calculation pattern described in Figure 2, the road maintenance cost needs from 2015 to 2025 showed at Appendix 8.

Networkbased\_20 and so on, meaning was analyzed by means of network based approach and allocation of cost maintenance every year is 20% of total cost maintenance needs of road network every year analysis. Simulation with multiple scenarios allocation of funds, it is known that the total cost of road maintenance needs until 2025 with an allocation of 20% of the total cost of road maintenance needs per year is Rp. 781.422.000.000.



**Figure5.** IRI Condition per year by different allocation budget scenario with network-based analysis

Similar to the results of analysis with Linkbased approaches, Using Network-based approaches and the planned allocation of road maintenance fund 20% of the total requirement per year, the total cost of maintenance of the road at the end of 2025 is the biggest than if the funds allocated is greater than 20%. It also gives the average value of IRI in the road network was getting worse. **In Figure 5** is shown that the difference IRI condition in difference allocation scenarios maintenance of roads. Average of IRI\_20 and so on, meaning average IRI per year for allocation budget 20% from maintenance needs. The difference in total cost of road maintenance until 2025 in each year on the type of analysis is shown in **Table 3**.

**Table 3:** Total road maintenance cost needs with network-based and benefit

| Analysis Types  | Total Cost (Rp.1.000.000,-) | Benefit (Rp.) |
|-----------------|-----------------------------|---------------|
| Networkbased 20 | 781,422                     | 0             |
| Networkbased 40 | 521,417                     | 260,005       |
| Networkbased_60 | 432,214                     | 349,208       |
| Networkbased_80 | 324,832                     | 456,590       |

#### 5. Discussion

Link-based analysis method approaches and network-based basically aimed is to try estimate of road maintenance cost needs in the future. Link-based would be very precisely and easy to implement by road asset managers to estimate the need for road maintenance funds in the short term at least for planning policy for funding up to 2 year. Data traffic in each segment needs to be updated annually in order to illustrate the impact of a road maintenance delays, implementation of these survey, it will add to the cost

for road asset manager. These funds would be much better to increase road maintenance fund.

While network-based method that is modified to consider the influence of the IRI, it takes more effort, because managers need additional knowledge that is road transport modeling. But is more indicative the actual condition road user behavior.

Appendix 7 and appendix 8 indicated differences in estimation road maintenance costs needs in the future, which is analyzed with link-based and network-based approaches. With link-based approaches, road maintenance fund allocation plan by 20% of the total requirement road maintenance fund in 2015, the total requirement for 10 year analysis (2015-2025) was Rp. 1.063.857.700.000, this figure is very much compared to when traffic is expected in the future using a network- based approaches, as well as considering the IRI against the free flow speed in the next year, then total needs of road maintenance fund is Rp. 781.422.000.000.

Table 4: The differences Total Cost Maintenance Linkbased and Networkbased

|              | Tuble II The anti-one of Total Cost    | Traintenance Eminoused and Tretty of Roused |             |
|--------------|----------------------------------------|---------------------------------------------|-------------|
|              | <b>Total Maintenance Cost (Fiscal)</b> | Need) at The End 2025 (Rp. 1.000.000,-)     |             |
| Alloc. Plan. | Ana                                    | alysis Types                                | Difference  |
|              | Link-based                             | Network- based                              |             |
| 20%          | 1,063,857.71                           | 781,422                                     | 282,436.03  |
| 40%          | 528,738.24                             | 521,417                                     | 7,321.48    |
| 60%          | 373,709.04                             | 432,214                                     | (58,505.07) |
| 80%          | 330,619.55                             | 324,832                                     | 5,788.04    |

Allocations plan 60% of the total road maintenance cost needs with link-based less than network-based. There are different sections that need to be maintained, due to differences traffic flow forecast. Consequently, there is differences roads maintenance programme. Example, randomly drawn average daily daily traffic (AADT) estimates using linkbased and network-based methods on 4 road segments in 2018, 2022 and 2025. Table 5 is shown that AADT link-based increases constantly according to the growth assumption on the segment, while network-based can sometimes be higher than linked AADT estimates but in the coming year may be lower.

**Table 5**: AADT using network-based and link-based

|       |                                          | Work bused that him bused    |                    |
|-------|------------------------------------------|------------------------------|--------------------|
| Years | Links                                    | <b>AADT by Network based</b> | AADT by Link based |
|       | Sp.Cokroaminoto - Sp.Tohpati             | 18.479                       | 17.607             |
|       | Jln. A. Yani - Jln. S. Parman (Seririt)  | 340                          | 329                |
| 2018  | Bts. Kota Gianyar - Sidan                | 2.672                        | 2.549              |
|       | Sp. Lap. Terbang (Dps) - Tugu Ngurah Ra  | 35.976                       | 34.273             |
|       | Jln. Astina Timur (Gianyar)              | 2.672                        | 2.549              |
|       | Sp.Cokroaminoto - Sp.Tohpati (Jln. G. Su | 21.194                       | 21.023             |
|       | Jln. A. Yani - Jln. S. Parman (Seririt)  | 404                          | 392                |
| 2022  | Bts. Kota Gianyar - Sidan                | 2.929                        | 3.044              |
|       | Sp. Lap. Terbang (Dps) - Tugu Ngurah Ra  | 39.301                       | 40.924             |
|       | Jln. Astina Timur (Gianyar)              | 2.790                        | 3.044              |

#### 6. Conclusion

From the analysis, and network-based approach to link-based, it can be concluded some of the following:

- 1. Traffic Flow forecasting approaches link-based will always be increased even though the road is not repaired, it becomes different if carried out with a network-based approach.
- 2. Allocating 20% of the total road maintenance needs in every year, at the end of 2025 will have the highest total cost compared to if the allocation of funds 40%, 60% and 80%.
- 3. At the end of 2025, the total cost of maintenance smaller when analyzed with a network-based approach, difference could reach 28% of the link-based analysis.

#### 7. Acknowledgements

The researchers would like to thank to rector of Mulawarman University and scholar for his support.

#### 8. References

- 1. Saedeh Fallah-Fini, "Optimizing highway maintenance operations", Dynamic considerations. System dynamic review, Vol. 26, No. 3. pp 216 238, 2010
- 2. Tamin O. Z, Planning and transport modeling: Penerbit ITB. Edisi 2. pp. 28, 2000.

- 3. Sayers, "Guidelines for Conducting and Calibrating Road Roughness Measurements", World Bank technical paper number 46. pp. 72, 1986
- 4. Dwilaksono Toto, "Pemodelan Perencanaan Komprihensip Pembangunan Infrastruktur Jalan (Tinjauan Jaringan Jalan)", Thesis UI. pp. 64, 2002
- 5. Odoki (version 2). Manual Highway Development and Management 4. Vol. 4. pp. C1-8.
- 6. Odoki (version 2). Manual Highway Development and Management 4. Vol. 4. pp. C2-7
- 7. Odoki (version 2). Manual Highway Development and Management 4. Vol. 4. pp. C2-55
- 8. Ministry of Public Works Directorate General of Highways, Pavement design manual. pp. 19, 2013
- 9. Badawi, "Studi analisis pemelihan scenario pengembangan angkutan umum kawasan kota Denpasar dan Kabupaten Badung menggunakan perangkat lunak EMME-4", ITB., 2013.
- 10. Ministry of Public Works Directorate General of Highways. (2014).

**Appendix 1:** Road maintenance programme consider IRI[10]

| Name of program        | Name of Sub-<br>Programme               | Range of<br>IRI | IRI (n+1)        | Treatment Details                                                                                       |  |  |  |  |  |
|------------------------|-----------------------------------------|-----------------|------------------|---------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                        | Routine Maintenance (Pr)                | 0-3.0           | IRI min + 0.5    | maintenance of drainage systems                                                                         |  |  |  |  |  |
| routine<br>maintenance | Conditions Routine<br>Maintenance (Prk) | 3.0 – 4         | IRI min -<br>0.5 | maintenance of road shoulders; vegetation clearance  Compaction, leveling, and reformation of shoulder. |  |  |  |  |  |
|                        | Prevent if maintenance (Pp)             | 4.0 - 6.0       | IRI min -<br>0.5 | Patching, sealing for surface crack, road maintenance equipment                                         |  |  |  |  |  |
|                        | Minor rehabilitation (RMn)              | 6.0 - 8.0       | to 3.0           | Non-structural overlay                                                                                  |  |  |  |  |  |
| Improvement            | Major rehabilitation (Rmy)              | 8.0 – 12.0      | to 3.0           | Structural overlay and repair drainage system                                                           |  |  |  |  |  |

Appendix 2: Unit cost for each treatment

| No  | Description                                               | Unit | Cost / km   |
|-----|-----------------------------------------------------------|------|-------------|
| INU | Description  Positive maintenance and Conditions (IDLO 4) | Unit | Cost / Kill |
|     | Routine maintenance and Conditions (IRI 0 - 4)            | IZ.  | 26.705      |
|     | a. Pav. width upto 4.5 m and shoulder 2x1 m               | Km   | 36,785      |
|     | b. Pav. width upto 5 m and shoulder 2x1 m                 | Km   | 37,488      |
| I   | c. Pav. width upto 6 m and shoulder 2x1.5 m               | Km   | 40,866      |
|     | d. Pav. width upto 7 m and shoulder 2x2 m                 | Km   | 44,244      |
|     | e. Pav. width upto s/d 14 m and shoulder 2x2 m            | Km   | 54,987      |
|     | Prevent if maintenance (IRI 4 - 6)                        |      |             |
|     | a. Pav. width upto 4.5 m and shoulder 2x1 m               | Km   | 468.413     |
| II  | b. Pav. width upto 5 m and shoulder 2x1 m                 | Km   | 510.385     |
| 11  | c. Pav. width upto 6 m and shoulder 2x1.5 m               | Km   | 607,365     |
|     | d. Pav. width upto 7 m and shoulder 2x2 m                 | Km   | 694,582     |
|     | e. Pav. width upto 14 m and shoulder 2x2 m                | Km   | 1,364,499   |
|     | Minor Rehabilitation (IRI 6.0 - 8.0)                      | 6.   |             |
|     | a. Pav. width upto 4.5 m and shoulder 2x1 m               | Km   | 780,689     |
| 111 | b. Pav. width upto 5 m and shoulder 2x1 m                 | Km   | 850,641     |
| III | c. Pav. width upto 6 m and shoulder 2x1.5 m               | Km   | 1,012,275   |
|     | d. Pav. width upto 7 m and shoulder 2x2 m                 | Km   | 1,157,637   |
|     | e. Pav. width upto 14 m and shoulder 2x2 m                | Km   | 2,274,165   |
|     | Improvement                                               |      |             |
|     | Major Rehabilitation (IRI 8.0 - 12.0)                     |      |             |
|     | a. Pav. width upto 4.5 m and shoulder 2x1 m               | Km   | 2,431,018   |
|     | b. Pav. width upto 5 m and shoulder 2x1 m                 | Km   | 2,675,174   |
|     | c. Pav. width upto 6 m and shoulder 2x1.5 m               | Km   | 3,220,695   |
|     | d. Pav. width upto 7 m and shoulder 2x2 m                 | Km   | 3,757,813   |
| IV  | e. Pav. width upto 14 m and shoulder 2x2 m                | Km   | 7,310,172   |
|     | Reconstruction (IRI > 12)                                 |      |             |
|     | a. Pav. width upto 4.5 m and shoulder 2x1 m               | Km   | 3,006,939   |
|     | b. Pav. width upto 5 m and shoulder 2x1 m                 | Km   | 3,314,358   |
|     | c. Pav. width upto 6 m and shoulder 2x1.5 m               | Km   | 4,279,337   |
|     | d. Pav. width upto 7 m and shoulder 2x2 m                 | Km   | 4,993,006   |
|     | e. Pav. width upto 14 m and shoulder 2x2 m                | Km   | 9,774,596   |

**Appendix 3:** Original and destination matrix on base year 2011[9]

|        |                                |             |             |             |        |             |        | _ |        |        | Z      | ona         |             | _      |        |        |             |             |             |             |        |        |     |        |        |             |             |             |        |        |        |     |        |        |
|--------|--------------------------------|-------------|-------------|-------------|--------|-------------|--------|---|--------|--------|--------|-------------|-------------|--------|--------|--------|-------------|-------------|-------------|-------------|--------|--------|-----|--------|--------|-------------|-------------|-------------|--------|--------|--------|-----|--------|--------|
| N<br>0 | Z<br>o<br>n<br>a               | 1           | 2           | 3           |        | 5           | 6      | 7 |        | 9      | 1 0    | 1<br>1<br>1 | 1 2         |        | 1<br>4 | 1<br>5 | 1<br>6      |             |             |             | 2<br>0 | 2      | 2 2 | 2 3    | 2 4    |             | 2 6         |             |        | 2<br>9 |        |     | 3<br>2 | 3 3    |
| 1      | Peca<br>tu                     | 0           | 5<br>0      | 1<br>1<br>0 | 2<br>0 | 5<br>0      | 1<br>0 | 0 | 0      | 0      | 1<br>0 | 0           | 7<br>0      | 0      | 4<br>0 | 1<br>0 | 3<br>0      | 3<br>0      | 3<br>0      | 3<br>0      | 1<br>0 | 0      | 0   | 4<br>0 | 1<br>0 | 6           | 5<br>0      | 2<br>9<br>0 | 3      | 4<br>0 | 0      | 0   | 0      | 3<br>0 |
| 2      | Tanj<br>ung<br>Ben<br>oa       | 3<br>0      | 0           | 1<br>0<br>0 | 4<br>0 | 1<br>3<br>0 | 1<br>0 | 0 | 0      | 2<br>0 | 1<br>0 | 0           | 1<br>8<br>0 | 3<br>0 | 6<br>0 | 0      | 1<br>1<br>0 | 1<br>3<br>0 | 8<br>0      | 1<br>5<br>0 | 1<br>0 | 1<br>0 | 0   | 9<br>0 | 1<br>0 | 5           | 1<br>8<br>0 | 2<br>5<br>0 | 0      | 5<br>0 | 1<br>0 | 0   | 0      | 5      |
| 3      | Jim<br>bara<br>n               | 1<br>3<br>0 | 3<br>0<br>0 | 0           | 4<br>0 | 2<br>7<br>0 | 1      | 0 | 1<br>0 | 1<br>0 | 5<br>0 | 0           | 2<br>6<br>0 | 2      | 7<br>0 | 1<br>0 | 6<br>0      | 1<br>0<br>0 | 1<br>7<br>0 | 2<br>6<br>0 | 4<br>0 | 3<br>0 | 0   | 5<br>0 | 3<br>0 | 1<br>5<br>0 | 2<br>8<br>0 | 2<br>0<br>0 | 3      | 7<br>0 | 1<br>0 | 3 0 | 0      | 1<br>0 |
| 4      | Tub<br>an                      | 3 0         | 1<br>5<br>0 | 7<br>0      | 0      | 7<br>0      | 0      | 0 | 0      | 0      | 0      | 0           | 1<br>3<br>0 | 0      | 9      | 2<br>0 | 8           | 1<br>7<br>0 | 5<br>0      | 1<br>1<br>0 | 2<br>0 | 1<br>0 | 0   | 2<br>0 | 0      | 4<br>0      | 1<br>6<br>0 | 1<br>1<br>0 | 2<br>0 | 0      | 0      | 0   | 0      | 0      |
| 5      | Kuta                           | 3<br>0<br>0 | 5<br>8<br>0 | 3<br>9<br>0 | 3<br>0 | 0           | 1<br>0 | 0 | 0      | 0      | 0      | 0           | 3<br>7<br>0 | 0      | 3<br>0 | 0      | 4<br>0      | 8<br>0      | 1<br>0      | 1<br>7<br>0 | 7<br>0 | 2<br>0 | 0   | 1<br>0 | 3      | 1<br>7<br>0 | 1<br>5<br>0 | 1<br>3<br>0 | 1<br>0 | 7<br>0 | 1<br>0 | 0   | 0      | 4<br>0 |
| 6      | Ker<br>obo<br>kan              | 3<br>0      | 5<br>0      | 8<br>0      | 1<br>0 | 5<br>0      | 0      | 0 | 0      | 0      | 0      | 0           | 0           | 0      | 0      | 0      | 0           | 1           | 0           | 0           | 0      | 0      | 0   | 0      | 0      | 0           | 0           | 0           | 0      | 0      | 0      | 0   | 0      | 0      |
| 7      | Kero<br>boka<br>n<br>Kelo<br>d | 0           | 0           | 1<br>0      | 0      | 0           | 0      | 0 | 0      | 0      | 0      | 0           | 0           | 0      | 0      | 0      | 0           | 0           | 0           | 0           | 0      | 0      | 0   | 0      | 0      | 0           | 0           | 0           | 0      | 0      | 0      | 0   | 0      | 0      |
| 8      | Can                            | 3           | 1           | 1           | 0      | 1           | 0      | 0 | 0      | 0      | 0      | 0           | 0           | 0      | 0      | 0      | 0           | 0           | 0           | 1           | 0      | 0      | 0   | 0      | 0      | 0           | 0           | 2           | 0      | 0      | 0      | 0   | 0      | 0      |

|        | ggu                       | 0           | 0           | 0           |             | 0           |   |        |     |        |   |        |        |     |        |        |        |        |        | 0           |        |        |     |        |        |        |        | 0      |        |        |        |        |        |        |
|--------|---------------------------|-------------|-------------|-------------|-------------|-------------|---|--------|-----|--------|---|--------|--------|-----|--------|--------|--------|--------|--------|-------------|--------|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 9      | Dalu<br>ng                | 1<br>2<br>0 | 1<br>1<br>0 | 7<br>0      | 1<br>0      | 1<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1<br>0 | Men<br>gw i               | 1<br>2<br>0 | 1<br>8<br>0 | 9<br>0      | 8<br>0      | 4<br>0      | 0 | 0      | 0   | 1<br>0 | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1      | Abia<br>nse<br>m al       | 2           | 2<br>0      | 2<br>0      | 0           | 2<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1 2    | Dan<br>ginp               | 1 8         | 5           | 6<br>7      | 3           | 8           | 0 | 1 0    | 0   | 0      | 0 | 0      | 0      | 1 0 | 1 0    | 0      | 2      | 4<br>0 | 2      | 1           | 1<br>0 | 0      | 1   | 0      | 0      | 0      | 1 0    | 1      | 1 0    | 1 0    | 0      | 1<br>0 | 1 0    | 0      |
| 1 3    | uri<br>Sum<br>erta        | 0           | 0<br>2<br>0 | 0<br>3<br>0 | 0<br>1<br>0 | 0<br>3<br>0 | 0 | 0      | 1 0 | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 2 0    | 0      | 0<br>1<br>0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1<br>4 | Kesi<br>m an              | 1<br>0<br>0 | 6<br>0      | 4<br>0      | 0           | 2<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 1<br>0      | 0      | 0      | 0   | 0      | 0      | 1<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1<br>5 | Pena<br>tih               | 4<br>0      | 3 0         | 3<br>0      | 0           | 1<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 1<br>6 | Ped<br>unga<br>n          | 8<br>0      | 9<br>0      | 9<br>0      | 1<br>0      | 3<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 7<br>0 | 0   | 1<br>0 | 1<br>0 | 0      | 3<br>0 | 5<br>0 | 1<br>4<br>0 | 0      | 0      | 0   | 3      | 0      | 1<br>0 | 1<br>0 | 0      | 0      | 2<br>0 | 1<br>0 | 0      | 0      | 0      |
| 1<br>7 | Sese<br>tan               | 9<br>0      | 1<br>9<br>0 | 1<br>9<br>0 | 3           | 8<br>0      | 0 | 1<br>0 | 0   | 0      | 0 | 0      | 3      | 0   | 0      | 0      | 7<br>0 | 0      | 4<br>0 | 9<br>0      | 0      | 1      | 0   | 3<br>0 | 1<br>0 | 1      | 4<br>0 | 4 0    | 1 0    | 0      | 0      | 0      | 1<br>0 | 1<br>0 |
| 1<br>8 | Sida<br>kary              | 9           | 1<br>3<br>0 | 2<br>1<br>0 | 1<br>0<br>0 | 7<br>0      | 0 | 0      | 0   | 0      | 0 | 1<br>0 | 0      | 0   | 0      | 0      | 5<br>0 | 7<br>0 | 0      | 8           | 2      | 0      | 0   | 1<br>0 | 0      | 2 0    | 1 0    | 4<br>0 | 0      | 0      | 2      | 0      | 0      | 0      |
| 1<br>9 | Sanu<br>r                 | 1 8         | 2 3         | 2<br>8      | 1<br>6      | 2 8         | 0 | 0      | 0   | 0      | 0 | 0      | 2 0    | 0   | 0      | 0      | 1 0    | 5<br>0 | 4<br>0 | 0           | 0      | 0      | 0   | 1 0    | 0      | 1 0    | 2 0    | 1 0    | 0      | 0      | 0      | 0      | 0      | 0      |
| 2 0    | Pem<br>onga               | 6<br>0      | 1<br>2      | 9<br>0      | 3 0         | 3 0         | 0 | 0      | 0   | 0      | 0 | 0      | 1 0    | 0   | 1 0    | 1 0    | 0      | 3 0    | 3 0    | 1 2         | 0      | 0      | 1 0 | 0      | 0      | 0      | 1 0    | 5      | 1 0    | 0      | 0      | 0      | 0      | 2 0    |
| 2      | n<br>Ubu<br>ng            | 4 0         | 7<br>0      | 7<br>0      | 1 0         | 6           | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0<br>1<br>0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 2 2    | Peg<br>uyan               | 1 0         | 6<br>0      | 3 0         | 0           | 0           | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 2 3    | gan<br>Tonj<br>a          | 4 0         | 6           | 1           | 0           | 4<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 1<br>0 | 2 0    | 0      | 1 0         | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| 2 4    | Pada<br>ngsa<br>m<br>bian | 1<br>0<br>0 | 4 0         | 9           | 4 0         | 1<br>0<br>0 | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 1 0    | 0      | 0      | 0      | 1 0    | 1<br>0 | 2 0    | 0      | 0      | 0      | 0      |
| 2 5    | Teg<br>alha<br>rum        | 1<br>2<br>0 | 3<br>4<br>0 | 3<br>3<br>0 | 9           | 2<br>9<br>0 | 0 | 0      | 0   | 0      | 0 | 0      | 2      | 0   | 0      | 0      | 2 0    | 2      | 1 0    | 4<br>0      | 1 0    | 0      | 0   | 1 0    | 0      | 0      | 0      | 2 0    | 0      | 0      | 0      | 0      | 0      | 1 0    |
| 2<br>6 | Dau<br>hpur               | 9           | 2<br>3<br>0 | 4<br>2<br>0 | 1<br>2<br>0 | 2<br>6<br>0 | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 5<br>0 | 3      | 1      | 4<br>0      | 0      | 0      | 0   | 0      | 0      | 1      | 0      | 0      | 0      | 1<br>0 | 0      | 0      | 0      | 0      |
| 2 7    | Gian<br>yar               | 1<br>9<br>0 | 1<br>1<br>0 | 1<br>7<br>0 | 1 0         | 6<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 1<br>0 | 1 0    | 0      | 1 0         | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 9      | 5<br>4 | 8<br>9 | 4<br>8 | 1<br>1 | 7<br>8 |
| 2 8    | Klun<br>gku               | 1 0         | 1<br>0      | 2 0         | 0           | 0           | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 8 0    | 0      | 2<br>9 | 3      | 1<br>9 | 4      | 2 2    |
| 2 9    | ng<br>Kara<br>ngas        | 2 0         | 4 0         | 4 0         | 0           | 0           | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 1 0    | 4 8    | 2 9    | 0      | 3 3    | 4 2    | 8      | 2 9    |
| 3 0    | em<br>Ban<br>gli          | 3 0         | 2 0         | 1 0         | 0           | 0           | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 1      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 8      | 3 4    | 3 4    | 0      | 3 0    | 6      | 3 3    |
| 3      | Bule<br>leng              | 0           | 4 0         | 2 0         | 1<br>0      | 2 0         | 0 | 0      | 0   | 0      | 0 | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 1<br>0 | 0   | 0      | 0      | 0      | 0      | 4 4    | 2      | 4      | 3      | 0      | 2 3    | 5<br>1 |
| 3 2    | Jem<br>bran               | 0           | 5 0         | 5 0         | 0           | 0           | 0 | 0      | 0   | 0      | 0 | 0      | 1 0    | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 1 1    | 4      | 8      | 6      | 2 3    | 0      | 1 5    |
| 3 3    | a<br>Tab<br>anan          | 1 5         | 8 0         | 7<br>0      | 6           | 7<br>0      | 0 | 0      | 0   | 0      | 0 | 0      | 2 0    | 0   | 0      | 0      | 0      | 0      | 0      | 0           | 0      | 0      | 0   | 0      | 0      | 0      | 0      | 7      | 2 3    | 3 0    | 3 3    | 5      | 1<br>5 | 0      |
|        | anan                      | 0           | U           | U           | U           | U           |   |        |     |        |   |        | U      |     |        |        |        |        |        |             |        |        |     |        |        |        |        | 1      | )      | U      | 3      | 1      | 3      |        |

**Appendix 4:** Road characteristics and AADT at early year [10]

| Seg.<br>No. | Road segmen names                    | Length<br>(Km) | Average<br>Width (M) | SDI<br>Average | IRI<br>Average | Nilai<br>AADT |
|-------------|--------------------------------------|----------------|----------------------|----------------|----------------|---------------|
| 001         | Gilimanuk - Cekik                    | 3,041          | 10,928               | 2,42           | 3,307          | 5141          |
| 002         | Cekik - Bts. Kota Negara             | 27,224         | 7,139                | 13,28          | 3,354          | 22319         |
| 002         | Jln. A. Yani - Jln. Udayana (Negara) | 1,923          | 12,181               | 0,75           | 3,325          | 11819         |
| 003         | Bts. Kota Negara - Pekutatan         | 20,445         | 7,330                | 0,32           | 3,285          | 6880          |
| 003         | Jln. Sudirman, Gajahmada (Negara)    | 4,466          | 9,181                | 2,22           | 3,337          | 13001         |
| 004         | Pekutatan - Antosari                 | 29,964         | 7,198                | 6,81           | 3,491          | 15807         |
| 005         | Antosari - Bts. Kota Tabanan         | 17,262         | 8,086                | 12,11          | 3,621          | 22689         |
| 003         | Simp. Kediri - Pesiapan (Tabanan)    | 4,020          | 17,776               | 2,56           | 3,628          | 32028         |

|       | Bts. Kota Tabanan - Mengwitani              | 1,462  | 13,000 | 1,00  | 3,240 | 50795 |
|-------|---------------------------------------------|--------|--------|-------|-------|-------|
| 006   | Jln. A. Yani (Tabanan)                      | 2,025  | 11,900 | 0,71  | 3,785 | 43812 |
|       | Mengwitani - Bts. Kota Denpasar             | 7,385  | 14,534 | 10,88 | 3,018 | 64924 |
|       | Jln. Cokroaminoto (Dps)                     | 3,826  | 11,132 | 25,64 | 2,870 | 33975 |
|       | Jln. Cokroaminoto (Dps)                     | 0,979  | 11,000 | 19,50 | 3,263 | 53609 |
| 007   | Jln. Sutomo (Dps)                           | 0,979  | 12,500 | 0,00  | 2,500 | 28094 |
| 007   | Jln. Setiabudi (Dps)                        | 0,770  | 10,000 | 0,00  | 4,113 | 20616 |
|       | Jln. Wahidin (Dps)                          | 0,770  | 8,000  | 0,00  | 4,113 | 30654 |
|       | Jln. Thamrin (Dps)                          | 0,232  | 9,000  | 11,25 | 3,875 | 21917 |
| 008   | Sp.Cokroaminoto - Sp.Kerobokan              | 3,788  | 14,000 | 0,92  | 3,661 | 47775 |
| 008   |                                             | 4,424  | 13,435 |       | 3,319 | 21474 |
| 009   | Jln. Gunung Agung - Akses Kargo             | 4,424  | 15,455 | 2,33  | 3,319 | 214/4 |
| 010   | Jln. Western Ring Road (Sp.Gatot<br>Subroto | 4,460  | 14,000 | 1,00  | 3,000 | 21474 |
| 011   | Kuta - Banjar Taman                         | 5,467  | 14,000 | 8,00  | 3,379 | 21474 |
| 012   | Denpasar - Tuban                            | 10,781 | 8,677  | 0,90  | 3,272 | 23140 |
| 013   | Simp. Kuta - Tugu Ngurah Rai                | 2,726  | 16,289 | 1,61  | 3,657 | 26367 |
| 014   | Sp. Lap. Terbang (Dps) - Tugu Ngurah<br>Ra  | 0,350  | 18,000 | 0,00  | 3,050 | 20037 |
| 015   | Tugu Ngurah Rai - Nusa Dua                  | 9,536  | 13,700 | 8,20  | 2,602 | 47469 |
| 016   | Simpang Kuta - Simp. Pesanggaran            | 3,693  | 13,000 | 23,38 | 3,419 | 38948 |
| 017   | Simp.Pesanggaran - Gerbang Benoa            | 0,604  | 19,000 | 2,14  | 4,067 | 7887  |
| 018   | Simpang Pesanggaran - Simpang Sanur         | 8,390  | 13,824 | 4,61  | 3,434 | 23452 |
| 019   | Simpang Sanur - Simpang Tohpati             | 4,390  | 13,023 | 8,86  | 2,805 | 24974 |
| 020   | Sp.Cokroaminoto - Sp.Tohpati (Jln. G.<br>Su | 5,357  | 13,198 | 0,91  | 3,194 | 24712 |
| 0.2.4 | Sp. Pantai Siut - Kosamba                   | 11,806 | 7,000  | 0,74  | 3,011 | 55683 |
| 021   | Sp. Tohpati - Sp. Pantai Siut               | 15,899 | 16,000 | 2,34  | 2,892 | 55683 |
| 022   | Sp. Tohpati - Sakah                         | 12,965 | 11,452 | 0,85  | 3,740 | 55683 |
| 023   | Sakah - Blahbatu                            | 3,027  | 8,111  | 0,48  | 3,603 | 26302 |
| 024   | Blahbatu - Semebaung                        | 3,765  | 8,433  | 0,00  | 3,162 | 28347 |
| -     | Semebaung - Bts. Kota Gianyar               | 2,095  | 8,050  | 0,00  | 3,086 | 31158 |
| 025   | Jln. Ciung Wanara (Gianyar)                 | 0,537  | 14,000 | 0,00  | 2,950 | 31158 |
|       | Jln. Astina Utara (Gianyar)                 | 0,398  | 10,000 | 0,00  | 4,300 | 31158 |
|       | Bts. Kota Gianyar - Sidan                   | 1,253  | 12,000 | 0,00  | 3,131 | 31965 |
| 026   | Jln. Ngurah Rai (Gianyar)                   | 0,667  | 7,000  | 2,14  | 3,257 | 31965 |
|       | Jln. Astina Timur (Gianyar)                 | 0,984  | 8,228  | 0,00  | 4,056 | 31965 |
|       | Sidan - Bts. Kota Klungkung                 | 7,180  | 7,500  | 7,43  | 3,244 | 13311 |
| 027   | Jln. Untung Suropati, Flamboyan             |        |        |       |       |       |
|       | (Semarap                                    | 1,769  | 8,335  | 2,78  | 3,254 | 13311 |
| 028   | Bts. Kota Klungkung - Kosamba (Bts. Kab.    | 10,101 | 11,300 | 1,62  | 3,476 | 31697 |
| 020   | Jln. Diponegoro (Semarapura)                | 0,815  | 7,251  | 0,00  | 3,247 | 31697 |
| 029   | Kosamba (Bts. Kab. Karangasem) -            | 4,376  | 8,949  | 5,80  | 3,701 | 11587 |
|       | Angente                                     |        | ŕ      |       | 1     |       |
| 030   | Angentelu - Padangbai                       | 2,048  | 7,324  | 1,59  | 3,350 | 951   |
| 031   | Cekik – Seririt                             | 62,910 | 8,600  | 1,96  | 3,313 | 1578  |
|       | Jln. A. Yani - Jln. S. Parman (Seririt)     | 0,741  | 7,892  | 0,00  | 3,440 | 1160  |
| 022   | Seririt - Bts. Kota Singaraja               | 18,656 | 16,224 | 7,85  | 3,453 | 15596 |
| 032   | Jln. Gajahmada - Dr. Sutomo - A. Yani<br>(S | 4,090  | 7,708  | 0,00  | 3,675 | 10857 |
| 033   | Bts. Kota Singaraja - Kubutambahan          | 6,199  | 10,374 | 1,53  | 3,720 | 17764 |

#### International Journal of Trend in Scientific Research and Development (IJTSRD) | ISSN: 2456-647

|     | Jln. Ng. Rai Selatan - Jln. Pramuka - Jl        | 6,007  | 7,004  | 1,56  | 3,102 | 13031 |
|-----|-------------------------------------------------|--------|--------|-------|-------|-------|
| 034 | Kubutambahan - Km 124 Dps (Bon Dalem/Ds.        | 46,000 | 7,000  | 0,58  | 3,761 | 3750  |
| 035 | Km 124 Dps (Bon Dalem/Ds. Tembok) - <u>Bts.</u> | 30,637 | 9,027  | 0,90  | 3,327 | 8735  |
|     | Jln. Untung Surapati (Amlapura)                 | 2,825  | 6,656  | 16,38 | 3,031 | 4068  |
| 036 | Bts. Kota Amlapura - Angentelu                  | 20,331 | 7,431  | 6,02  | 3,671 | 16208 |
| 030 | Jln. Sudirman - A. Yani (Amlapura)              | 2,584  | 9,871  | 1,11  | 3,271 | 16208 |
| 037 | Bts. Kota Singaraja - Mengwitani                | 60,425 | 7,500  | 9,39  | 3,722 | 2564  |
| 037 | Jln. Jelantik Gingsir - Veteran (Singara        | 3,425  | 10,000 | 4,29  | 3,745 | 632   |
| 038 | Sp. 3 Mengwi – Beringkit                        | 0,413  | 9,108  | 0,00  | 4,050 | 632   |

Appendix 5: Traffic forecasting by link-based approach

|    |                                            |            | uix 3. 1   |            | 77 0 0 0 1 2 1 1 1 |            |                    |            |            |            |            |                                                                                                                                                                      |
|----|--------------------------------------------|------------|------------|------------|--------------------|------------|--------------------|------------|------------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No | NAMA RUAS                                  | 2015       | 2016       | 2015       | 2010               |            | OLUMI              |            | 2022       | 2022       | 2024       | 2025<br>429<br>429<br>429<br>2868<br>2868<br>2868<br>2868<br>2868<br>14872<br>27999<br>27999<br>27999<br>27999<br>27999<br>27999<br>27999<br>27999<br>27999<br>27999 |
| 1  |                                            | 2015       | 2016       | 2017       | 2018               | 2019       | 2020               | 2021       | 2022       | 2023       | 2024       |                                                                                                                                                                      |
| 2  | Gilimanuk – Cekik Cekik - Bts. Kota Negara | 319<br>319 | 329<br>329 | 338<br>338 | 349<br>349         | 359<br>359 | 370<br>370         | 381<br>381 | 392<br>392 | 404<br>404 | 416<br>416 |                                                                                                                                                                      |
|    | Jln. A. Yani -Jln.                         | 319        | 329        | 330        | 349                | 339        | 370                | 361        | 392        | 404        | 410        | 429                                                                                                                                                                  |
| 3  | Udayana(Negara)                            | 319        | 329        | 338        | 349                | 359        | 370                | 381        | 392        | 404        | 416        | 429                                                                                                                                                                  |
| 4  | Bts. KotaNegara-<br>PekutatanGajahmada     | 2134       | 2198       | 2264       | 2332               | 2402       | 2474               | 2548       | 2625       | 2703       | 2784       | 2868                                                                                                                                                                 |
| 5  | Jln. Sudirman, (Negara)                    | 2134       | 2198       | 2264       | 2332               | 2402       | 2474               | 2548       | 2625       | 2703       | 2784       | 2868                                                                                                                                                                 |
| 6  | Pekutatan-Antosari                         | 2134       | 2198       | 2264       | 2332               | 2402       | 2474               | 2548       | 2625       | 2703       | 2784       | 2868                                                                                                                                                                 |
| 7  | Antosari - Bts. Kota<br>Tabanan            | 2134       | 2198       | 2264       | 2332               | 2402       | <mark>2</mark> 474 | 2548       | 2625       | 2703       | 2784       | 2868                                                                                                                                                                 |
| 8  | Simp. Kediri - Pesiapan<br>(Tabanan)       | 2134       | 2198       | 2264       | 2332               | 2402       | 2474               | 2548       | 2625       | 2703       | 2784       | 2868                                                                                                                                                                 |
| 9  | Bts. KotaTabanan-<br>Mengwitani            | 11066      | 11398      | 11740      | 12092              | 12455      | 12829              | 13213      | 13610      | 14018      | 14439      | 14872                                                                                                                                                                |
| 10 | Jln. A. Yani (Tabanan)                     | 11066      | 11398      | 11740      | 12092              | 12455      | 12829              | 13213      | 13610      | 14018      | 14439      | 14872                                                                                                                                                                |
| 11 | Mengwitani -Bts.Kota<br>Denpasar           | 20834      | 21459      | 22103      | 22766              | 23449      | 24152              | 24877      | 25623      | 26392      | 27184      | 27999                                                                                                                                                                |
| 12 | Jln. Cokroaminoto(Dps)                     | 20834      | 21459      | 22103      | 22766              | 23449      | 24152              | 24877      | 25623      | 26392      | 27184      | 27999                                                                                                                                                                |
| 13 | Jln. Cokroaminoto(Dps)                     | 20834      | 21459      | 22103      | 22766              | 23449      | 24152              | 24877      | 25623      | 26392      | 27184      | 27999                                                                                                                                                                |
| 14 | Jln.Sutomo(Dps)                            | 20834      | 21459      | 22103      | 22766              | 23449      | 24152              | 24877      | 25623      | 26392      | 27184      | 27999                                                                                                                                                                |
| 15 | Jln. Setiabudi (Dps)                       | 20834      | 21459      | 22103      | 22766              | 23449      | 24152              | 24877      | 25623      | 26392      | 27184      | 27999                                                                                                                                                                |
| 16 | Jln. Wahidin (Dps)                         | 20834      | 21459      | 22103      | 22766              | 23449      | 24152              | 24877      | 25623      | 26392      | 27184      | 27999                                                                                                                                                                |
| 17 | Jln. Thamrin (Dps)                         | 20834      | 21459      | 22103      | 22766              | 23449      | 24152              | 24877      | 25623      | 26392      | 27184      | 27999                                                                                                                                                                |
| 18 | Sp.Cokroaminoto-<br>Sp.Kerobokan           | 17963      | 18502      | 19057      | 19629              | 20218      | 20824              | 21449      | 22092      | 22755      | 23438      | 24141                                                                                                                                                                |
| 19 | Jln. GunungAgung-<br>AksesKargo            | 25542      | 26308      | 27098      | 27910              | 28748      | 29610              | 30498      | 31413      | 32356      | 33327      | 34326                                                                                                                                                                |
| 20 | Jln. Western Ring Road (Sp. Gato Subro to  | 25487      | 26252      | 27039      | 27850              | 28686      | 29546              | 30433      | 31346      | 32286      | 33255      | 34252                                                                                                                                                                |
| 21 | Kuta –BanjarTaman                          | 33572      | 34579      | 35617      | 36685              | 37786      | 38919              | 40087      | 41289      | 42528      | 43804      | 45118                                                                                                                                                                |
| 22 | Denpasar- Tuban                            | 59895      | 61692      | 63543      | 65449              | 67412      | 69435              | 71518      | 73663      | 75873      | 78149      | 80494                                                                                                                                                                |
| 23 | Simp. Kuta – Tugu<br>NgurahRai             | 73854      | 76070      | 78352      | 80702              | 83123      | 85617              | 88186      | 90831      | 93556      | 96363      | 99254                                                                                                                                                                |
| 24 | Sp. Lap. Terbang(Dps)-<br>TuguNgurah Ra    | 33275      | 34273      | 35301      | 36360              | 37451      | 38575              | 39732      | 40924      | 42152      | 43416      | 44719                                                                                                                                                                |
| 25 | TuguNgurah Rai-Nusa<br>Dua                 | 55825      | 57500      | 59225      | 61001              | 62832      | 64716              | 66658      | 68658      | 70717      | 72839      | 75024                                                                                                                                                                |
| 26 | SimpangKuta-Simp.<br>Pesanggaran           | 71137      | 73271      | 75469      | 77733              | 80065      | 82467              | 84941      | 87490      | 90114      | 92818      | 95602                                                                                                                                                                |
| 27 | Simp.Pesanggaran-<br>GerbangBenoa          | 9581       | 9868       | 10164      | 10469              | 10783      | 11107              | 11440      | 11783      | 12137      | 12501      | 12876                                                                                                                                                                |

|    | C. D                                        |       |       |       |       |                    |       |       | · ·   | 1     |       |       |
|----|---------------------------------------------|-------|-------|-------|-------|--------------------|-------|-------|-------|-------|-------|-------|
| 28 | SimpangPesanggaran-<br>Simpang Sanur        | 29095 | 29968 | 30867 | 31793 | 32747              | 33729 | 34741 | 35783 | 36857 | 37962 | 39101 |
| 29 | Simpang Sanur-Simpang<br>Tohpati            | 15334 | 15794 | 16268 | 16756 | 17259              | 17776 | 18310 | 18859 | 19425 | 20007 | 20608 |
| 30 | Sp.Cokroaminoto-<br>Sp.Tohpati (Jln. G. Su  | 17094 | 17607 | 18135 | 18679 | 19239              | 19817 | 20411 | 21023 | 21654 | 22304 | 22973 |
| 31 | Sp. PantaiSiut-Kosamba                      | 7018  | 7229  | 7445  | 7669  | 7899               | 8136  | 8380  | 8631  | 8890  | 9157  | 9432  |
| 32 | Sp.Tohpati-Sp.PantaiSiut                    | 7018  | 7229  | 7445  | 7669  | 7899               | 8136  | 8380  | 8631  | 8890  | 9157  | 9432  |
| 33 | Sp. Tohpati-Sakah                           | 20482 | 21096 | 21729 | 22381 | 23053              | 23744 | 24457 | 25190 | 25946 | 26724 | 27526 |
| 34 | Sakah-Blahbatu                              | 19514 | 20099 | 20702 | 21323 | 21963              | 22622 | 23301 | 24000 | 24720 | 25461 | 26225 |
| 35 | Blahbatu-Semebaung                          | 19514 | 20099 | 20702 | 21323 | 21963              | 22622 | 23301 | 24000 | 24720 | 25461 | 26225 |
| 36 | Semebaung - Bts. Kota<br>Gianyar            | 19514 | 20099 | 20702 | 21323 | 21963              | 22622 | 23301 | 24000 | 24720 | 25461 | 26225 |
| 37 | Jln.CiungWanara<br>(Gianyar)                | 19514 | 20099 | 20702 | 21323 | 21963              | 22622 | 23301 | 24000 | 24720 | 25461 | 26225 |
| 38 | Jln.AstinaUtara(Gianyar)                    | 19514 | 20099 | 20702 | 21323 | 21963              | 22622 | 23301 | 24000 | 24720 | 25461 | 26225 |
| 39 | Bts. Kota Gianyar-Sidan                     | 2475  | 2549  | 2626  | 2704  | 2786               | 2869  | 2955  | 3044  | 3135  | 3229  | 3326  |
| 40 | Jln. NgurahRai(Gianyar)                     | 2475  | 2549  | 2626  | 2704  | 2786               | 2869  | 2955  | 3044  | 3135  | 3229  | 3326  |
| 41 | Jln.AstinaTimur<br>(Gianyar)                | 2475  | 2549  | 2626  | 2704  | 2786               | 2869  | 2955  | 3044  | 3135  | 3229  | 3326  |
| 42 | Sidan -Bts. Kota<br>Klungkung               | 2475  | 2549  | 2626  | 2704  | 2786               | 2869  | 2955  | 3044  | 3135  | 3229  | 3326  |
| 43 | Jln.UntungSuropati,<br>Flamboyan (Semarap   | 2475  | 2549  | 2626  | 2704  | 2786               | 2869  | 2955  | 3044  | 3135  | 3229  | 3326  |
| 44 | Bts. Kota Klungkung-<br>Kosamba (Bts.Kab.   | 3531  | 3637  | 3746  | 3858  | 397 <mark>4</mark> | 4093  | 4216  | 4343  | 4473  | 4607  | 4745  |
| 45 | Jln. Diponegoro<br>(Semarapura)             | 3531  | 3637  | 3746  | 3858  | 397 <mark>4</mark> | 4093  | 4216  | 4343  | 4473  | 4607  | 4745  |
| 46 | Kosamba(Bts.Kab.Karan gasem) – Angente      | 5709  | 5880  | 6057  | 6238  | 6426               | 6618  | 6817  | 7021  | 7232  | 7449  | 7672  |
| 47 | Angentelu- Padangbai                        | 5709  | 5880  | 6057  | 6238  | 6426               | 6618  | 6817  | 7021  | 7232  | 7449  | 7672  |
| 48 | Cekik–Seririt                               | 319   | 329   | 338   | 349   | 359                | 370   | 381   | 392   | 404   | 416   | 429   |
| 49 | Jln. A. Yani -<br>Jln.S.Parman (Seririt)    | 319   | 329   | 338   | 349   | 359                | 370   | 381   | 392   | 404   | 416   | 429   |
| 50 | Seririt-Bts.KotaSingaraja                   | 319   | 329   | 338   | 349   | 359                | 370   | 381   | 392   | 404   | 416   | 429   |
| 51 | Jln. Gajahmada-<br>Dr.Sutomo – A.Yani(s     | 319   | 329   | 338   | 349   | 359                | 370   | 381   | 392   | 404   | 416   | 429   |
| 52 | Bts. KotaSingaraja –<br>Kubutambahan Pram   | 1001  | 1031  | 1062  | 1094  | 1127               | 1160  | 1195  | 1231  | 1268  | 1306  | 1345  |
| 53 | Jln. Ng. Rai Selatan-<br>Jln.uka-Jl         | 1001  | 1031  | 1062  | 1094  | 1127               | 1160  | 1195  | 1231  | 1268  | 1306  | 1345  |
| 54 | Kubutambahan - Km<br>124 Dps (Bon Dalem/Ds. | 1001  | 1031  | 1062  | 1094  | 1127               | 1160  | 1195  | 1231  | 1268  | 1306  | 1345  |
| 55 | Km124Dps (Bon Dalem/<br>Ds. Tembok)- Bts.   | 594   | 612   | 630   | 649   | 669                | 689   | 709   | 731   | 752   | 775   | 798   |
| 56 | Jln. UntungSurapati<br>(Amlapura)           | 594   | 612   | 630   | 649   | 669                | 689   | 709   | 731   | 752   | 775   | 798   |
| 57 | Bts. KotaAmlapura–<br>Angentelu             | 5709  | 5880  | 6057  | 6238  | 6426               | 6618  | 6817  | 7021  | 7232  | 7449  | 7672  |
| 58 | Jln. Sudirman - A. Yani<br>(Amlapura)       | 5709  | 5880  | 6057  | 6238  | 6426               | 6618  | 6817  | 7021  | 7232  | 7449  | 7672  |
| 59 | Bts. KotaSingaraja–<br>Mengwitani           | 2981  | 3070  | 3163  | 3257  | 3355               | 3456  | 3559  | 3666  | 3776  | 3890  | 4006  |
| 60 | Jln. JelantikGingsir-<br>Veteran (Singara   | 2981  | 3070  | 3163  | 3257  | 3355               | 3456  | 3559  | 3666  | 3776  | 3890  | 4006  |
| 61 | Sp. 3 Mengwi-Beringkit                      | 10472 | 10786 | 11110 | 11443 | 11786              | 12140 | 12504 | 12879 | 13266 | 13664 | 14073 |

Appendix 6: Total road maintenance cost needs every year with link-based

| Analysis  |      | T    | otal ma | intenar | ice cost | needs | every yo | ears(Rp. | 1.000.00 | 0,-)  |       | Total   |
|-----------|------|------|---------|---------|----------|-------|----------|----------|----------|-------|-------|---------|
| Types     | 2015 | 2016 | 2017    | 2018    | 2019     | 2020  | 2021     | 2022     | 2023     | 2024  | 2025  | cost    |
| Linkbased | 33,2 | 32,6 | 32,6    | 57,2    | 74,0     | 85,1  | 72,2     | 106,0    | 119,5    | 225,7 | 225,2 | 1,063,8 |
| _20       | 26   | 56   | 56      | 63      | 33       | 20    | 85       | 90       | 70       | 54    | 04    | 58      |
| Linkbased | 33,2 | 32,6 | 31,3    | 43,4    | 46,1     | 46,1  | 47,4     | 47,42    | 53,67    | 68,17 | 79,03 | 528,73  |
| _40       | 26   | 56   | 68      | 87      | 39       | 39    | 21       | 1        | 3        | 9     | 0     | 8       |
| Linkbased | 33,2 | 31,6 | 31,6    | 32,6    | 32,6     | 32,6  | 33,9     | 32,65    | 32,65    | 37,48 | 42,49 | 373,70  |
| _60       | 26   | 48   | 48      | 56      | 56       | 56    | 38       | 0        | 0        | 6     | 6     | 9       |
| Linkbased | 33,2 | 28,7 | 28,7    | 28,7    | 28,7     | 28,7  | 28,7     | 28,77    | 28,77    | 33,60 | 33,60 | 330,62  |
| _80       | 26   | 72   | 72      | 72      | 72       | 72    | 72       | 2        | 2        | 8     | 8     | 0       |

Appendix 7: The differences in link traffic flow (link-based vs network-based)

| No | Roads                   | Length(m) | IRI2015 | IRI2020  | LinkBa<br>appr | sed_20<br>oach | NetworkBased_20<br>approach |              |  |
|----|-------------------------|-----------|---------|----------|----------------|----------------|-----------------------------|--------------|--|
|    | Rouds                   | Length(m) | 1142013 | 11112020 | AADT<br>2015   | AADT<br>2020   | AADT<br>2015                | AADT<br>2020 |  |
| 15 | Jln. Setiabudi<br>(Dps) | 0.77      | 4.21    | 4.74     | 20,834         | 24,152         | 20,834                      | 22,979       |  |
| 16 | Jln. Wahidin<br>(Dps)   | 0.23      | 4.23    | 4.76     | 20,834         | 24,152         | 20,834                      | 22,979       |  |
| 17 | Jln. Thamrin<br>(Dps)   | 0.38      | 3.97    | 4.50     | 20,834         | 24,152         | 20,834                      | 22,978       |  |

Appendix 8: The total road maintenance cost per year with network-based

| rippendix of the total road maintenance cost per year with network cased |      |         |                |         |          |         |         |         |          |           |      |           |  |
|--------------------------------------------------------------------------|------|---------|----------------|---------|----------|---------|---------|---------|----------|-----------|------|-----------|--|
| Analysis                                                                 |      | Total N | <b>Iainten</b> | ance Co | st (Fisc | al Need | ) per Y | ears (R | p. 1.000 | 0.000, -) |      | Total     |  |
| Types                                                                    | 2015 | 2016    | 2017           | 2018    | 2019     | 2020    | 2021    | 2022    | 2023     | 2024      | 2025 | cost(Rp.) |  |
| Networkb                                                                 | 33,2 | 32,6    | 32,6           | 57,2    | 59,9     | 66,1    | 66,1    | 90,2    | 93,9     | 131,      | 117, | 791 422   |  |
| ased_20                                                                  | 26   | 56      | 56             | 63      | 15       | 67      | 67      | 67      | 09       | 420       | 777  | 781,422   |  |
| Networkb                                                                 | 33,2 | 32,6    | 31,3           | 38,5    | 41,1     | 41,1    | 41,1    | 59,4    | 59,4     | 69,1      | 74,1 | 521,417   |  |
| ased_40                                                                  | 26   | 56      | 68             | 27      | 78       | 78      | 78      | 38      | 38       | 09        | 19   | 321,417   |  |
| Networkb                                                                 | 33,2 | 31,6    | 30,3           | 37,7    | 30,5     | 37,7    | 30,5    | 48,8    | 48,8     | 48,8      | 53,8 | 432,214   |  |
| ased_60                                                                  | 26   | 48      | 59             | 36      | 77       | 36      | 77      | 37      | 37       | 37        | 47   | 432,214   |  |
| Networkb                                                                 | 33,2 | 32,6    | 28,7           | 28,7    | 28,7     | 28,7    | 28,7    | 28,7    | 28,7     | 28,7      | 28,7 | 324,832   |  |
| ased_80                                                                  | 26   | 56      | 72             | 72      | 72       | 72      | 72      | 72      | 72       | 72        | 72   | 324,832   |  |

Appendix 9: Differences maintenance program due to differences in forecasts traffic flow

|          |         |                           | Network        | based_60  | )             |                |         |                                   | Link              | based_60  |               |              |
|----------|---------|---------------------------|----------------|-----------|---------------|----------------|---------|-----------------------------------|-------------------|-----------|---------------|--------------|
| Ye<br>ar | N<br>o. | Link                      | Lenght(<br>Km) | Width (M) | Treat<br>ment | Cost<br>(Rp.)  | N<br>o. | Link                              | Len<br>ght<br>(Km | Width (m) | Treat<br>of   | Cost<br>(Rp) |
| 20<br>22 | 3 3     | Sp.<br>Tohpati -<br>Sakah | 12,97          | 11,5      | Preven<br>tif | 17.690<br>.730 | 2 7     | Simp. Pesangg aran Gerban g Benoa | 0,60              | 19,0      | Preve<br>ntif | 824.1<br>57  |
|          | 1       | Jln.                      | 0,98           | 11,0      | Preven        | 1.335.         | 1       | Jln.                              | 0,77              | 10,0      | Preve         | 1.050.       |
|          | 3       | Cokroam                   |                |           | tif           | 845            | 3       | Setiabu                           |                   |           | ntif          | 664          |

International Journal of Trend in Scientific Research and Development (IJTSRD) | ISSN: 2456-647

|     | inoto<br>(Dps)             |      |      |               |               |     | di (Dps)                  |      |      |               |               |
|-----|----------------------------|------|------|---------------|---------------|-----|---------------------------|------|------|---------------|---------------|
| 1 5 | Jln.<br>Setiabudi<br>(Dps) | 0,77 | 10,0 | Preven<br>tif | 1.050.<br>664 | 1 6 | Jln.<br>Wahidi<br>n (Dps) | 0,23 | 8,0  | Preve<br>ntif | 316.5<br>64   |
| 1 6 | Jln.<br>Wahidin<br>(Dps)   | 0,23 | 8,0  | Preven<br>tif | 316.56<br>4   | 1 7 | Jln.<br>Thamri<br>n (Dps) | 0,38 | 9,0  | Preve<br>ntif | 513.0<br>52   |
| 1 7 | Jln.<br>Thamrin<br>(Dps)   | 0,38 | 9,0  | Preven<br>tif | 513.05<br>2   | 1 3 | Jln. Cokroa mino to (Dps) | 0,98 | 11,0 | Preve<br>ntif | 1.335.<br>845 |