

International Journal of Trend in Scientific Research and Development (IJTSRD)
 International Open Access Journal | www.ijtsrd.com

 ISSN No: 2456 - 6470 | Volume - 2 | Issue – 6 | Sep – Oct 2018

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 508

In Search for the Super Element: Algorithms to Generate

Higher Order Elements

Mohammad Tawfik
Academic Director, Academy of Knowledge, Egypt

ABSTRACT

This work was motivated by the need that may arise

during the creation of finite element programs, for

higher order elements. The problem of selecting or

creating shape functions that satisfy the required need

of the problem may be one major problem that stand

in the way of the element creation. In this work we

present an attempt that points in the direction of

creating the element matrices for higher order

elements using simple, Lagrange, and modified

Lagrange polynomials. The results obtained for the

test cases indicate the possibilities and limitations on

those attempts. It is concluded that the modifies

Lagrange polynomials have a great potential for use in

elements with high number of nodes and/or high

number of DOF per node. Nevertheless, they impose a

high computational cost on the element matrices

generation.

Keywords: higher order elements, finite element

analysis

1. INTRODUCTION

In the past decades, the finite element method has

grown into a well developed numerical technique that

can be used to provide accurate and relatively quick

solution to boundary value problems that describe

several physical problems. The procedure of the finite

element model starts by dividing the domain into

elements that are connected through nodes. Each node

has degrees of freedom (DOF) that, usually, present

the value and derivatives of the physical function of

interest. Then the elements are defined by the

interpolation functions that describe the change of the

function within their boundaries. Following that, the

whole domain description is created by assembling

the elements and applying the boundary conditions.

Finally, the problem is solved to obtain the values of

the DOF of all the nodes. 1, 2

The basic assumption is that as the number of

elements increase in the domain, the solution

approaches the exact one. The power of the finite

element method lies in that it may use simple

functions, usually polynomials, to describe the change

of the target function inside an element, and then use

that to describe the change in the whole domain by

assembling the different elements that cover the

domain.

Another approach to reach higher accuracy is to

increase the order of each of the elements used in the

model which reduces the need for higher number of

elements (p-version finite element). Higher order

elements may be generated by using more nodes in

the element, using more complex functions, or by

hierarchical elements. 3, 4, 5, 6

Most of the work performed for the solution of the

finite element problem is algorithmic, that enabled the

excessive use computers and the production of

computer packages that can manipulate several

physical problems with complex domain geometries.

Nevertheless, in the core of all finite element codes,

lies the element matrices. The element matrices are

generated through the knowledge of the mathematical

model that describes the physical problem and the

selection of the interpolation functions, shape

functions. Equipped with those two pieces of

information, you may generate the element matrices

for any physical problem. However, the generation of

a general element is still far from algorithmic. 7

A special problem faces the generation of the finite

element model is the selection of the interpolation

function that satisfies the prescribed degrees of

freedom at the nodes 5, 6, 8. Many of the problems

solved involved the selection of functions that are

http://www.ijtsrd.com/
http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 509

published in the literature most of which are the so

called Lagrange Polynomials. The Lagrange

polynomials possess a preferred characteristic that

they have the value of one at a specific point, node, in

the domain and the value of zero at all other nodes.

When the DOF involve derivatives of the function,

the Lagrange polynomials should be selected to

satisfy the condition that they have the slope of one at

the associated node and zero at the others as well.

However, it is quite difficult to find the Lagrange

polynomials that may be used in a general problem

that is why they may be generated by using classical

interpolation techniques.

The classical interpolation techniques require the

evaluation of the polynomial coefficients by forcing

the polynomial to satisfy the boundary conditions,

thus, requiring the solution of a set algebraic equation,

hence, the inversion of a matrix. The matrix inversion

process is a straight forward numerical technique;

however, as the number of variables increase, the

matrix eventually becomes singular because of the

round-off errors. 9, 10

Another challenge that faces the creators of finite

element models is the performance of integration. The

element matrices are generated by integrating the

shape functions or their derivatives over the element.

In many simple cases, the integration is readily

available by hand or using symbolic manipulators.

However, in more practical cases, numerical

integration is required which, in turn, introduces

errors to the resulting element models.

In the past years, several research articles were

published, mostly by mathematics oriented

researchers, about the topic of generating higher order

polynomials, shape functions, for applications in the

finite element models 5, 6, 8, 11, 12. Such research,

among many others not cited here, accomplished a

great task in the direction of generalizing the

automation of finite element model generation.

Following that, an excellent attempt for the

automation was presented in 7 using the symbolic

manipulator Mathematica® and an accompanying

package AceGen®.

None of the research reviewed by the author presented

a straight-forward methodology that may be used by

the engineers who need to create finite element

models on numerical manipulators, thus, in the

following work, we will be attempting to describe a

generalize procedure for the generation of the finite

element matrices with an eye on elements with large

numbers of nodes and degrees of freedom. We will

start by describing a classical method of generating

the matrices and creating the shape functions, then we

will move towards describing attempts to generate a

general method for performing exact integration for

generating element matrices. Following that, we will

describe the attempts using Lagrange polynomials to

avoid matrix inversion, finally, modifies Lagrange

polynomials will be created to enable to the creation

of different finite element problems.

The main purpose of this work is providing a

methodology that may by applied using numerical

manipulators, especially open source, to generate the

element matrices that may be used by researchers

without the need for commercial packages or

commercial symbolic manipulators.

2. CLASSICAL APPROACH

2.1. Interpolation Polynomials – Shape Functions

The finite element model starts by assuming the

solution of the unknown function in terms of an

interpolation polynomial that satisfies the values of

the degrees of freedom at the nodes of the element. In

most text, these functions are denoted the letter N

such that:

f (x)= f 1N1(x)+f 2 N2(x)+...

Where fi are the values of the function at node i and

Ni(x) are polynomials that have the value of one at the

corresponding node and zero at every other node. The

above relation may be written as:

f (x)= ⌊N1(x) N2(x) ...⌋{
f 1

f 2

⋮ }= ⌊N (x)⌋{δ }

The first problem that faces the researcher who wants

to create a new finite element model is to find and

select the polynomials that may be used for the

problem. However, that is not a great problem for low

order elements since the polynomials are readily

available in many texts. Nevertheless, coding them

may involve mistyping which will require debugging

of the code. On the other hand, it becomes a bit

inconvenient to change the number of nodes per

element to test the effect of higher, or lower, order

elements. Thus we may use another way of defining

the polynomials that can reduce both problems, that is

by using regular simple polynomials such that:

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 510

f (x)= a0+a1 x+a2x
2
...= ⌊1 x x

2
...⌋{

a0

a1

a2

⋮
}= ⌊H (x)⌋{a}

Where ai are constants, generalized coordinates that

should be determined for the function to satisfy the

given values. To do that we will need to set a number

of equations and solve them to find those values, thus:
f (x1)= f 1= ⌊H (x1)⌋{a}

f (x2)= f 2= ⌊H (x2)⌋{a}

f (x3)= f 3= ⌊H (x3)⌋{a}
⋮

Which may be written as:

[
⌊H (x1)⌋

⌊H (x2)⌋

⌊H (x3)⌋
⋮

]{
a0

a1

a2

⋮
}={

f 1

f 2

f 3

⋮
}

[T]{a}= {δ }
Which gives:

{a}= [T
− 1

] {δ }

f (x)= ⌊H (x)⌋[T− 1
] {δ }

It can be readily proven that:

⌊N(x)⌋= ⌊H (x)⌋[T− 1]

Thus using this procedure we were able to obtain the

polynomials for any number of degrees of freedom

without having to look them up in literature or

enduring the problems of mistyping them into the

code. However, nothing comes for free; using this

method will involve matrix inversion which will

become ill-conditioned as the number of degrees of

freedom increase.

If the degrees of freedom of the element involve the

derivatives of the function, we may adjust the above

procedure. Given the value of the function fi and the

fist derivative f’i, for example, we may write:

f ' (x)= ⌊H ' (x)⌋{a}= ⌊0 1 2x ...⌋{
a0

a1

a2

⋮
}

Then the [T] matrix may be constructed such that:

[T]= [
⌊H (x1)⌋

⌊H ' (x1)⌋

⌊H (x2)⌋

⌊H ' (x2)⌋
⋮

]

In this case, the number of degrees of freedom per

element will be equal to twice the number of nodes

and the function Ni(x) will appear in pairs. The first

function of the pair will have a value of one at its

corresponding node while the slope at that node is

zero, and has a value and slope of zero at every other

node. Meanwhile, the second function of the pair will

have a slope of one and a value of zero at the

corresponding node while its value and slope are

equal to zero at every other node.

Note that, in both cases above, the order of the

polynomial terms in the H(x) matrix does not affect

the resulting shape functions because they are going

to be rearranged using the T matrix.

2.2. Element Matrices

Each finite element problem will generate a set of

matrices for each element. These matrices are derived

from the physical model that is usually presented in

the form of a differential equation. The matrices are

constructed by integrating some derivative of the

function that usually appears in the form:

ke= ∫
x1

x2

Q(x)D
m
(⌊N(x)⌋)T

D
m
(⌊N(x)⌋)dx

Where Q(x) is some function that describes the

physical properties of the problem, Dm(.) is a

differential operator that differentiates the function

f(x) m times. For example, in mechanics of material,

the finite element matrix for a bar in static problem

may be obtained using:

ke= ∫
x1

x2

E(x) A(x){N ' (x)}⌊N ' (x)⌋dx

Where E(x) and A(x) are the modulus of elasticity and

the cross-section area respectively. For simple

problems, the above integral may be performed by

hand or using symbolic manipulators. However, it is

more convenient to use numerical integration in order

to add flexibility to the programming. Nevertheless,

some cases will not allow for hand or symbolic

manipulators’ integration, thus it is common to find

numerical integration routines associated with any

finite element program. One of the popular techniques

used for numerical integration is the Gauss-Legendre

quadrature which produces almost exact integration

for polynomials that may reach up to 24th order. 12

2.3. 2-D Problems

In 2-D problems, the interpolation polynomials should

include combinations of the x and y coordinates. To

identify the terms, the common practice is to select

them from what is known as the Pascal triangle (See

Figure 1). The number of terms selected should be

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 511

equal to the number of degrees of freedom and it is

recommended that the terms should create a

symmetric shape in that triangle.

Figure 1. Pascal triangle

The Pascal triangle is quite handy in many problems,

however, if you strict your work to using the full

polynomials in both directions, then the generation of

the terms becomes quite straight forward by

multiplying both x and y-polynomials. For example,

for a quadrilateral element with a single degree of

freedom per node, we need a linear polynomial in

each of the directions, hence, we may write:

H
*
(x, y)={1y}⌊1 x⌋=[1 x

y xy]
→H (x, y)= ⌊1 x y xy⌋

Then we proceed with the H(x,y) vector just as in the

1-D cases:

[T]= [
⌊H (x1 , y1)⌋

⌊H (x2 , y2)⌋
⋮]

From which we obtain:

⌊N(x, y)⌋= ⌊H (x, y)⌋[T− 1]
Note, again, that the order of the polynomial terms in

the H vector will not affect the resulting shape

functions similar to what we had in the 1-D problems.

At this point, we still have both problems when

generating the higher order elements, namely, the

matrix inversion and the numerical integration. In the

following section, we will attempt generating the

matrices using exact integration to avoid the

numerical integration problem.

3. EXACT INTEGRATION

To avoid the errors introduced by the numerical

integration, we may resolve to exact integration using

symbolic manipulators (wxMaxima® , Mathematica®

, Mable® , etc …) but then we are back to the

problem of rewriting the element matrices into our

code, with all the problems that may include, or write

the whole finite element model using the symbolic

package which is normally extremely slow when it

comes to numerical manipulations compare to

numerical coding packages (Octave® , Matlab® , etc

...) or programming languages (Fortran, C++, etc …).

Thus, we resolve to write an algorithm to perform the

exact integration on the numerical package for

specific elements with unknown number of degrees of

freedom. This is where the H(x) row-matrix becomes

very handy. Since the row-matrix is composed of

simple polynomial terms, their differentiation, and

later integration, is readily evaluated.

Let’s examine the case of a bar element with n nodes

(and n degrees of freedom). For the bar element, the

element matrix, stiffness matrix, is evaluated using

the integration:

ke= ∫
x1

x2

EA{N' (x)}⌊N ' (x)⌋dx

For the sake of the illustration, we will assume that

the modulus of elasticity and the cross-section area

are constants, thus, we may write:

ke= EA∫
x1

x2

[T
− 1

]
T
{H ' (x)}⌊H ' (x)⌋[T− 1

]dx

But, the transformation matrix is also constant, thus, it

may be dragged out of the integration leaving us with

the derivative of the H(x) vector.

ke= EA [T
− 1

]
T∫

x1

x2

{H ' (x)}⌊H ' (x)⌋dx[T
−1

]

In this case, the T matrix may be given as:

[T]= [
⌊H (x1)⌋

⌊H (x2)⌋
⋮

⌊H (xn)⌋
]

If we examine the terms of the H(x) vector, we may write:

⌊H (x)⌋= ⌊1 x x
2

...⌋ or hi= x
i− 1

 i= 1,2,3,...,n
Thus the first derivative may be written as:

⌊H ' (x)⌋= ⌊0 1 2x ...⌋
 or

h' i=
0 i= 1

(i− 1)xi− 2 i = 2,3,... ,n

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 512

Hence, we may write the matrix:
{H ' (x)}⌊H ' (x)⌋= [G(x)]

where

gij= h' i h' j=
0 when i∨ j= 1

(i− 1)(j− 1) x
(i− 2)+(j− 2)

 i , j= 2,3,... ,n

From that, we may get the integration:

ke= EA [T
− 1

]
T∫

x1

x2

[G(x)]dx[T
− 1

]= EA [T
− 1

]
T
[G

*
][T

−1
]

where

gij
*
=

0 when i∨ j= 1

(i− 1)(j− 1)

(i− 2)+(j− 2)+1
(x2

(i− 2)+(j− 2)+1
− x1

(i− 2)+(j− 2)+1
)
 i , j= 2,3,... ,n

Similarly, for any 1-D problem involving any derivative, we may readily obtain the general term for the G

matrix and perform the integration to obtain the G* matrix.

Let’s examine the case of a beam element with n nodes (and 2n degrees of freedom). For the beam element, the

element matrix, stiffness matrix, is evaluated using the integration:

ke= ∫
x1

x2

EI {N ' ' (x)}⌊N' ' (x)⌋dx

For the sake of the illustration, we will assume that the modulus of elasticity and the cross-section second

moments of area are constants, thus, we may write:

ke= EI ∫
x1

x2

[T
−1

]
T
{H' ' (x)}⌊H ' ' (x)⌋[T− 1

]dx

But, the transformation matrix is also constant, thus, it may be dragged out of the integration leaving us with

the derivative of the H(x) vector.

ke= EI [T
−1

]
T∫

x1

x2

{H ' ' (x)}⌊H ' ' (x)⌋dx[T
− 1

]

In this case, the T matrix may be given as:

[T]= [
⌊H (x1)⌋

⌊H ' (x1)⌋

⌊H (x2)⌋

⌊H ' (x2)⌋
⋮

⌊H (xn)⌋

⌊H ' (xn)⌋
]

If we examine the terms of the H(x) vector, we may write:

⌊H (x)⌋= ⌊1 x x
2

...⌋ or hi= x
i− 1

 i= 1,2,3,...,n

Thus the second derivative may be written as:
⌊H ' ' (x)⌋= ⌊0 0 2 6x ...⌋

 or

h' ' i=
0 i= 1,2

(i− 1)(i− 2) xi−3 i= 3,4,. .. ,n

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 513

Thus, we may write the matrix:

{H ' ' (x)}⌊H ' ' (x)⌋= [G(x)]
where

gij= h' ' i h' ' j=
0 when i∨ j = 1,2

(i− 1)(i− 2)(j− 1)(j− 2) x
(i− 3)+(j− 3)

 i , j= 3,4,. .. ,n

From that, we may get the integration:

ke= EI [T
− 1

]
T∫

x1

x2

[G(x)]dx[T
− 1

]= EA [T
− 1

]
T
[G

*
][T

−1
]

where

gij
*
=

0 when i∨ j= 1,2

(i− 1)(i− 2)(j− 1)(j− 2)

(i− 3)+(j− 3)+1
(x2

(i−3)+(j− 3)+1
− x1

(i− 3)+(j− 3)+1
)
 i , j= 3,4,... ,n

For 2-D problems, the problem becomes a little more complex. The general term of the H(x,y) vector will

depend on the order at which we select the terms from the Pascal’s triangle. For illustration, let’s assume that

we are going to generate a rectangular element for plate bending that ensures continuity of slope (C1 element).

In this case, the number of nodes in the element may be selected to be n2 where n is the number of nodes per

side of the element (n=2,3,4, …) in this case the number of degrees of freedom per element will be 4n2, and the

x and y polynomials, each, will be of 2n-1 order. We may write:

[H
*
(x , y)]=[

1 x x
2

... x
2n− 1

y xy x
2
y ... x

2n− 1
y

⋮ ⋮

y
2n− 1

x y
2n− 1

x
2

y
2n− 1

... x
2n− 1

y
2n− 1]

Thus, we may write the H(x,y) vector as:

⌊H (x, y)⌋= ⌊1 x ... x2n− 1 y xy ... x2n− 1 y2n− 1⌋

Whose general term may be given by:

hk= hij
* = x j− 1 yi− 1 where k= j +2n(i− 1), i , j= 1,2,... ,2n

And the derivatives of the H vector, may be written as:

hk , xx= (j− 1)(j− 2) x
j− 3

y
i− 1

hk, yy= (i− 1)(i− 2) x
j− 1

y
i− 3

hk ,xy= (j− 1)(i− 1) x
j− 2

y
i− 2

k= j +2n(i− 1)

The element stiffness matrix for the static loading problem of thin plates may be written as:

ke= ∫
x1

x2

∫
y1

y2

[T
− 1

]
T [C]

T
[Q][C][T−1

]dydx

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 514

Where:

[T]
4 n

2
× 4n

2=[
⌊H (x1 , y1)⌋

⌊H x(x1, y1)⌋

⌊H y(x1, y1)⌋

⌊H xy(x1, y1)⌋

⌊H (x2 , y2)⌋

⌊H x(x2, y2)⌋

⌊H y(x2, y2)⌋

⌊H xy(x2, y2)⌋
⋮

⌊H (x
n

2 , y
n

2)⌋

⌊H x(x
n

2 , y
n

2)⌋

⌊H y(x
n2, y

n2)⌋

⌊H xy(x
n2, y

n2)⌋

]

And:

[C]
3× 4 n

2=[
⌊H xx(x, y)⌋

⌊H yy(x , y)⌋

2⌊Hxy(x , y)⌋]

Whose general term may be written as:
c1k= hk , xx

c2k= hk , yy

c3k= hk , xy

k= 1,2,... ,4n
2

[Q] is the plate stiffness which may be written, for the sake of compactness, in the form:

[Q]=[
a b 0

b a 0

0 0 c]

The matrix [G] may be written as:

[G]= [C]T [Q][C]

where the general term may evaluated by:

gkl= a(hk,xxhl , xx+hk,yyhl , yy)+b(hk, yyhl , xx+hk,xxhl ,yy)+4chk,xyhl , xy

Let’s now examine each term.

hk, xx hl , xx= (jk− 1)(j k− 2)(j l− 1)(j l− 2)x jk+ jl− 6 yi k+i l− 2

hk, yy hl , xx= (ik− 1)(ik− 2)(j l− 1)(j l− 2) x j k+ j l− 4 yik+i l− 4

hk,xx hl , yy= (jk− 1)(jk− 2)(i l− 1)(i l− 2) x j k+ j l− 4 yik+i l− 4

hk, yy hl , yy= (ik− 1)(ik− 2)(il− 1)(i l− 2)x jk+ j l−2 yi k+i l− 6

hk, xy hl , xy= (jk− 1)(ik− 1)(j l− 1)(i l− 1)x jk + j l− 4 yik+i l− 4

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 515

Where

1
12

1
12

1

1
12

1
12

1

+
+n

jl
=i

+
+n

l
mod=j

+
+n

jk
=i

+
+n

k
mod=j

l
l

l

k
k

k

−








 −

−








 −

Performing the integration, we get:

α 1= ∫
x1

x2

∫
y1

y2

hk ,xx hl , xx dydx=
(jk− 1)(jk− 2)(j l− 1)(j l− 2)

(jk+ j l− 5)(ik+i l− 1)
(x2

jk+ j l− 5
− x1

jk+ j l− 5
)(y2

ik+il− 1
− y1

ik+i l−1
)

Similarly:

α 2= ∫
x1

x2

∫
y1

y2

hk, yy hl , xx dydx=
(ik− 1)(ik− 2)(j l− 1)(j l− 2)

(jk+ j l− 3)(ik+i l− 3)
(x2

jk+ j l− 3
− x1

jk+ jl− 3
)(y2

ik+i l− 3
− y1

ik+ il− 3
)

α 2= ∫
x1

x2

∫
y1

y2

hk, yy hl , xx dydx=
(ik− 1)(ik− 2)(j l− 1)(j l− 2)

(jk+ j l− 3)(ik+i l− 3)
(x2

jk+ j l− 3
− x1

jk+ jl− 3
)(y2

ik+i l− 3
− y1

ik+ il− 3
)

α 4=∫
x1

x2

∫
y1

y2

hk, yyhl , yy dydx=
(ik− 1)(ik− 2)(il− 1)(i l− 2)

(jk+ j l− 1)(ik+il− 5)
(x2

jk+ jl− 1
− x1

jk+ j l− 1
)(y2

ik+i l− 5
− y1

ik+i l− 5
)

α 5= ∫
x1

x2

∫
y1

y2

hk,xy hl , xy dydx=
(jk− 1)(ik− 1)(j l− 1)(i l− 1)

(jk+ j l− 3)(ik+i l− 3)
(x2

jk+ j l−3
− x1

jk+ j l− 3
)(y2

ik+ il− 3
− y1

ik+i l− 3
)

From which, we may get the integral of the general term of the [G] matrix in the form:

∫
x1

x2

∫
y1

y2

gkl dydx= gkl

*
= a(α 1+α 4)+b(α 2+α 3)+4Cα 5

In both the 1-D and 2-D problems illustrated above, we were able to create the element matrices exactly using

the trick of integrating the H vector and its derivatives. However, the limiting condition on generating high

order elements will always be the inversion of the T matrix which will become ill-conditioned with higher order

elements. For example, the plate bending element described above worked only until the number of nodes

became 16 (64 DOF) (7th order polynomial in each of the x and y directions) using double precision numbers

on the Octave numerical manipulator. Hence, a search for another technique was required.

4. LAGRANGE POLYNOMIALS

4.1. 1-D problems

The Lagrange interpolation polynomial for an (n-1)th order polynomial, which may be used when n degrees of

freedom are give, may be written in the form:

f (x)=∑
i= 1

n

f i∏
j= 1
j≠ i

n− 1 x− x j

xi− x j

= ⌊N1(x) N2(x) ... Nn(x)⌋{
f 1

f 2

⋮
f n

}

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 516

Where:

Ni (x)=∏
j=1
j≠ i

n− 1 x− x j

xi− x j

Thus, we may obtain the first derivative in the form:

N' i (x)=∑
k= 1

k≠ i

n− 1
1

xi− xk

∏
j= 1
j≠ k

j≠ i

n−1 x− x j

xi− x j

We may also obtain further derivatives for use in the element equation, however, let’s remember that the

function interpolation is based on the values of the function, thus, if we need to have any of the derivatives of

the function as a degree of freedom, we cannot use this interpolation method. Nevertheless, we have obtained

the shape functions without having to go through the matrix inversion problem described in the previous

section. On the other hand, performing the exact integration will not be readily available for the general term

since it now involves multiplication of several linear terms. Luckily, as mentioned earlier, the Gauss quadrature

integration provides high degree of accuracy for a relatively high order polynomial integration.

Note that he order of the Lagrange polynomials used above has to coincide with the order of the node

numbering unlike the cases we described in sections 2 and 3 above.

4.2. 2-D Problems

With the same advantages and disadvantages of the 1-D problem, the derivation of the shape functions for a 2-

D problem comes straight forward by multiplying the polynomials in the x and y directions.

f (x, y)=∑
i= 1

nx

∑
j= 1

ny

f ij∏
k=1
k≠ i

nx− 1
x− xk

xi− xk

∏
l= 1
l ≠ j

ny− 1
y− yl

y j− yl

= ⌊N11(x , y) N12(x, y) ... Nnxny
(x , y)⌋{

f 11

f 12

⋮
f n

x
n

y

}

In a vector, we usually use a single index to point to the different element, thus, we need to create a relation

between the vector index and the i and j counters of the nodes counters in a 2-D element. A simple relation for

counting the nodes in the x-direction first would be in the form:
m= i+(j− 1)nx

i= 1,2, ... ,nx

j= 1,2,. .. ,ny

m= 1,2,. ..,nx× ny
Thus we may write the general shape function in the form:

Nm(x , y)= Nij (x , y)=∏
k= 1

k≠ i

nx− 1
x− xk

xi− xk

∏
l= 1

l≠ j

ny− 1
y− yl

y j− yl

For which we may evaluate the first derivatives to be:

Nm,x(x, y)= Nij ,x(x , y)= ∑
p= 1
p≠ i

nx−1
1

xi− xp

∏
k= 1

k≠ p
k≠ i

nx− 1
x− xk

xi− xk

∏
l = 1

l≠ j

ny− 1
y− yl

y j− yl

Nm, y(x , y)= N ij , y(x, y)=∏
k= 1

k≠ i

nx− 1
x− xk

xi− xk

∑
q= 1
q≠ j

ny− 1
1

y j− yq

∏
l= 1

l≠ q
l≠ j

ny− 1
y− yl

y j− yl

Nm,xy(x , y)= Nij , xy(x, y)= ∑
p= 1
p≠ i

nx− 1
1

xi− xp

∏
k= 1

k≠ p
k≠ i

nx− 1
x− xk

xi− xk

∑
q= 1
q≠ j

ny− 1
1

y j− yq

∏
l= 1

l≠ q
l≠ j

ny− 1
y− yl

y j− yl

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 517

5. MODIFYING THE INTERPOLATION FUNCTION

Borrowing from the Spline interpolation techniques, we may work around with the Lagrange polynomials to

obtain polynomials that may include derivatives of the function. In the following, we will work with functions

that are required to satisfy the value of the function and its first derivative at each node of the element. We will

start be deriving the cubic polynomial that will fit 2 values and two slopes, then, we will describe the process

for quintic polynomial, followed by the general approach for obtaining the (2n-1)th polynomial that may be

used for n-node elements.

5.1. The Polynomials

Using the similarities we obtained in the 3rd and 5th order polynomial derivation, we will present a

generalization in the following section. We may write the general relation for a function of the (2n-1)th order

that uses n pairs of polynomials as:

f (x)=∑
i= 1

n

Si (x)

Where:

Si (x)= (C1+C2(x− xi))∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

This function needs to satisfy the conditions:

Si (xi)= f i

S' i (xi)= f ' i
For the first condition, we get:

C1= f i
To proceed with the second condition, we get the slopes as:

S' i (x)= C2∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

+2(C1+C2(x− xi))∑
k= 1

k≠ i

n x− xk

(xi− xk)
2∏

j= 1
j≠ i

j≠ k

n

(x− x j

xi− x j
)

2

Substituting:

S' i (xi)= f ' i= C2+2C1∑
k=1
k≠ i

n
1

xi− xk

Which gives:

C2= f ' i− 2f i∑
k=1
k≠ i

n
1

xi− xk

Thus we may write the pair of polynomials as:

Si (x)=(f i +(f ' i− 2f i∑
k= 1
k≠ i

n
1

xi− xk)(x− xi))∏j= 1
j ≠ i

n

(
x− x j

xi− x j
)

2

Rearranging, we obtain:

Si (x)= f i(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∏j =1
j ≠ i

n

(x− x j

xi− x j
)

2

+ f ' i (x− xi)∏
j=1
j≠ i

n

(x− x j

xi− x j
)

2

From which we may write the shape functions as:

Ni ,1(x)=(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∏j = 1
j ≠ i

n

(
x− x j

xi− x j
)

2

N i ,2(x)= (x− xi)∏
j= 1
j≠ i

n

(
x− x j

xi− x j
)

2

i= 1,2,... ,n

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 518

In 2-D problems, the interpolation functions will be a straight forward generalization of the above procedure

giving the function in the form:

f (x, y)=∑
m= 1

n

Sm(x , y)

n= nx× ny
Where:

Sm(x)= (C1+C2(x− xi)+C3(y− y j)+C4(x− xi)(y− y j))∏
k=1

k≠ i

nx

(x− xk

xi− xk
)

2

∏
l= 1

l ≠ j

ny

(y− yl

y j− yl
)

2

m= i +(j− 1)∗ nx

i= 1,2,... ,nx

j= 1,2,... ,ny

m= 1,2,. ..,n
This function needs to satisfy the conditions:

Sm(xi , y j)= f ij

Sm, x(xi , y j)= f ij , x

Sm, y(xi , y j)= f ij , y

Sm,xy(xi , y j)= f ij , xy
Which will result in a quartet of shape functions in the form:

() () () 

















−

−












−

−



















−
−−

















−
−−

y
n

jq

=q qj

q
x

n

il

=l li

l
y

n

jp

=p pj

j

x
n

ik

=k ki

im,
yy

yy

xx

xx

yy
yy

xx
xx=yx,N

1

2

1

2

11

1

1
21

1
21

Nm,2(x , y)= (x− xi)(1− 2(y− y j)∑
p= 1

p≠ j

n
y

1

y j− yp)∏l= 1
l≠ i

nx

(
x− xl

xi− xl
)

2

∏
q= 1
q≠ j

ny

(
y− yq

y j− yq
)

2

Nm,3(x , y)=(1− 2(x− xi)∑
k= 1

k≠ i

n
x

1

xi− xk)(y− y j)∏
l= 1
l≠ i

nx

(
x− xl

xi− xl
)

2

∏
q= 1
q≠ j

ny

(
y− yq

y j− yq
)

2

Nm,4(x)= (x− xi)(y− y j)∏
l= 1

l≠ i

nx

(x− xl

xi− xl
)

2

∏
q= 1

q≠ j

ny

(y− yq

y j− yq
)

2

i= 1,2, ... ,nx

j= 1,2,. .. ,ny

m= 1,2,. ..,nx× ny
5.2. The Derivatives

In the problems that make use of the shape functions described in the previous section, the finite element model

usually requires the first and second derivatives of the shape function to perform the required calculations. In

this section, we will present those derivatives for the 1-D problem without elaborations.

Ni ,1(x)=(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∏j =1
j ≠ i

n

(x− x j

xi− x j
)

2

Ni ,2(x)= (x− xi)∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

N' i ,1(x)=(− 2∑
k= 1
k≠ i

n
1

xi− xk)∏j= 1
j≠ i

n

(
x− x j

xi− x j
)

2

+(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∑l= 1
l≠ i

n

2
x− xl

(xi− xl)
2∏

j= 1
j≠ i
j≠ l

n

(
x− x j

xi− x j
)

2

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 519

N' i ,2(x)=∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

+(x− xi)∑
k= 1

k≠ i

n

2
x− xk

(xi− xk)
2∏

j= 1
j≠ i

j≠ k

n

(x− x j

xi− x j
)

2

N ' ' i ,1(x)= 2(− 2∑
k= 1
k≠ i

n
1

xi− xk)∑l= 1
l≠ i

n

2
x− xl

(xi− xl)
2∏

j= 1
j≠ i
j≠ l

n

(
x− x j

xi− x j
)

2

+(1− 2(x− xi)∑
k= 1

k≠ i

n
1

xi− xk)(∑l= 1

l≠ i

n
2

(xi− xl)
2∏

j= 1
j≠ i

j≠ l

n

(
x− x j

xi− x j
)

2

+∑
l= 1

l≠ i

n

2
x− xl

(xi− xl)
2∑

m= 1

m≠ i
m≠ l

n

2
x− xm

(xi− xm)
2∏

j= 1
j≠ i

j≠ l
j≠ m

n

(
x− x j

xi− x j
)

2

)

N' ' i ,2(x)= 2∑
k= 1

k≠ i

n

2
x− xk

(xi− xk)
2∏

j= 1
j≠ i

j≠ k

n

(x− x j

xi− x j
)

2

+(x− xi)(∑k= 1
k≠ i

n
2

(xi− xk)
2∏

j= 1

j≠ i
j≠ k

n

(
x− x j

xi− x j
)

2

+∑
k= 1
k≠ i

n

2
x− xk

(xi− xk)
2∑

l = 1
l ≠ i

l≠ k

n

2
x− xl

(xi− xl)
2∏

j = 1

j ≠ i
j≠ k

j ≠ l

n

(
x− x j

xi− x j
)

2

)

6. NUMERICAL RESULTS

All the test cases used were confined to generating the element stiffness matrix for different problems for

isoparametric C0 and C1 continuous elements. The number of nodes were increased and the Eigenvalues of the

matrix were evaluated until the lowest (negative) Eigenvalue reached an absolute values larger than 10-4 at

which the element was considered a failure since the matrices investigated were supposed to be positive semi-

definite. The results for the different problems are presented below.

Table 1 presents the change of the values of the minimum Eigenvalue of the stiffness matrix generated for a bar

element. If we ignore the numbers that have an absolute value less than 10-10 considering them as a numerical

zero, we may still find that increasing the number of nodes per element start to introduce negative Eigenvalues

until we reach the failure criterion set in this work as 10-4. Note that, unpredictably, the exact integration

method failed before the numerical integration at 15 nodes per element. On the other hand, the Lagrange

polynomial method, which does not use the transformation matrix, was able to produce satisfactory results up

to 23 nodes per element which approaches the limit of the 12 point numerical integration technique used.

Table 2 presents the results obtained for a beam element. Again we find that the exact integration and numerical

integration elements, both, failed around the 18 and 16 DOF respectively which coincides with the number of

DOF at which failure occurred in the bar element. Meanwhile, the Modified Lagrange method was able to

continue all the way up to 24 DOF which reaches the limit imposed by the numerical integrator.

Table 1. Change of the lowest Eigenvalue for the Bar problem using different methods

Number of Nodes Classical Method Exact Integration Lagrange Polynomials

2 0.0000 0.0000 0.0000

5 0.0000 1.3550 * 10-15 -3.2092 * 10-14

13 -4.3771 * 10-11 1.8269 * 10-8 -4.7237 * 10-9

14 -3.5311 * 10-10 1.2446 * 10-6 -8.3456 * 10-9

15 -6.7339 * 10-9 -7.2761 * 103 - Failure -1.7247 * 10-8

16 -4.0141 * 10-5 -6.8237 * 10-8

17 -0.0063877 - Failure -2.7224 * 10-7

24 -0.000284 – Almost!

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 520

Table 2. Change of the lowest Eigenvalue for the Beam problem using different methods

Number of Nodes (DOF) Classical Method Exact Integration Modified Lagrange Polynomials

2 (4) -1.8447 * 10-15 -1.6821 * 10-15 -4.0007 * 10-16

5 (10) -2.7423 * 10-10 -2.3674 * 10-10 -7.2653 * 10-13

6 (12) -2.7096 * 10-8 -4.4350 * 10-10 -3.3600 * 10-10

7 (14) 9.5001 * 10-8 4.6870 * 10-8 -1.4082 * 10-9

8 (16) -2,4339 - Failed -2.7862 * 10-4 -1,0945 * 10-9

9 (18) -0.045658 - Failed -3.2284 * 10-8

11 (22) -7.7276 * 10-7

12 (24) -2.9915 * 10-5

Table 3. Change of the lowest Eigenvalue for the Plate problem using different methods

Number of Nodes

(DOF)
Classical Method Exact Integration

Modified Lagrange

Polynomials

4 (16) -2.4664 * 10-16 -9.9632 * 10-16 -4.2013 * 10-15

9 (36) -4.0203 * 10-13 -4.3150 * 10-13 -1.1133 * 10-14

16 (64) -2.1111 * 10-9 -3.6665 * 10-10 9.6377 * 10-16

25 (100)
-2.6320 * 10+5 -

Failed

-1.9562 * 10+7 -

Failed
-2.7317 * 10-14

100 (400) -4.5663 * 10-6

121 (484) -2.1076 * 10-4 – Almost!

144 (576) -0.023264 - Failed

Table 3 presents the results for a plate bending problem. The same patterns observed in the bar and beam

elements can be observed in the plate problem for the modified Lagrange case.

7. CONCLUSIONS

Several problems were examined in this work to

demonstrate the limitations imposed on the creation of

super elements with high number of nodes and

degrees of freedom. The element matrices were

generated using simple, Lagrange, and modified

Lagrange polynomials and the integration was

performed numerically using Gauss-Lagrange

quadrature or exact when possible. Problems

involving 1-D elements with 1 or 2 DOF per node and

2-D problems with 4 DOF per node were examined

by increasing the number of nodes per element until

the lowest (negative) Eigen value of the stiffness

matrix had an absolute value greater than 10-4. From

the results obtained above we may conclude the

following:

➢ Automated generation of higher order

isoperimetric C0 and C1 continuous element model

was enabled using an open source numerical

manipulator (Octave®) using the different

methods presented in this work.

➢ Generating higher order elements is

computationally expensive compared to lower

ones. Thus, the h-version is more efficient for the

same accuracy than the p-version.

➢ Using numerical integration to evaluate the

element matrices is efficient and accurate enough

for most practical purposes

➢ Using Lagrange and modified Lagrange

polynomial increases the stability of the results for

higher order element problems when they become

a necessity to use. In such cases, the limitation on

the results’ accuracy will be imposed by the

accuracy of the numerical integration scheme.

Further work with the modified Lagrange

polynomials, proposed in this work, is needed to

enable the inclusion of higher order derivatives in the

interpolation polynomials. Such research will help in

the generation of elements with the needed derivatives

without falling into the trap of the ill-conditioned

transformation matrix.

REFERENCES AND BIBLIOGRAPHY

1. J. N. Reddy, An Introduction to the Finite Element

Method, 3rd ed., McGraw Hill, 2006

2. M. Tawfik, Finite Element Analysis, book draft,

ResearchGate.net, 2017, DOI:

10.13140/RG.2.2.32391.70560

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 521

3. M. Tawfik, A Spectral Finite Element Model for

Thin Plate Vibration, International Congress on

Sound and Vibration (ICSV14), Cairns, Australia,

9-12 July 2007. DOI: 10.13140/2.1.1123.6167

4. M. Tawfik, Higher Order and Spectral Finite

Element Model for Thin Plate Vibration – Much

Difference?, 5th International Conference on

Mathematics and Information Sciences

(ICMIS2016), Zewail City of Science and

Technology 11-13- Feb. 2016

5. I. Babuska, B. Szabo, and I. Katz, The p-Version

of the Finite Element Method, SIAM Journal of

Numerical Analysis, Vol. 18, No. 33, pp. 515-545,

June 1981

6. L. Demkpvicz, J. Kurtz, D. Pardo, M. Paszynski,

W. Rachowicz, and A. Zdunek, Computing with

hp-Adaptive Finite Elements, Chapman and Hall,

2008

7. J. Korelc and P. Wriggers, Automation of Finite

Element Methods, Springer Verlag, 2016, DOI

10.1007/978-3-319-39005-5

8. A. Bespalov and N. Heuer, A New H(div)

Conforming p-Interpolation Operator in Two

Dimensions, ESAIM: Mathematical Modeling and

Numerical Analysis, Vol. 45, pp. 255-275, 2011,

DOI:10.1051/m2an/2010039

9. M. Tawfik, Fundamentals of Numerical Analysis,

book draft, ResearchGate.net, 2017, DOI:

10.13140/RG.2.2.25680.81925

10. S. C. Chapra and R. P. Canale, Numerical

Methods for Engineers, 5th ed., McGraw Hill,

2006

11. L. Demkowicz, J. Gopalakrishnan, and J.

Schöberl, Polynomial Extension Operators. P art

I, Mathematics and Statistics Faculty Publications

and Presentations. 61, 2008 http://pdxscholar

.library .pdx.edu/mth_fac/61

12. M. Costable, M. Dauge, and L. Demkovicz,

Polynomial Extension Operators for H1, H(curl),

H(div) – Spaces on a Cube, Mathematics of

Computation, Vol. 77, No. 264, pp. 1967-1999,

2008

13. D. Zwillinger (editor), Standard Mathematical

Tables and Formulae, 30th ed., CRC Press, 2000

http://www.ijtsrd.com/

