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ABSTRACT 

This work was motivated by the need that may arise 

during the creation of finite element programs, for 

higher order elements. The problem of selecting or 

creating shape functions that satisfy the required need 

of the problem may be one major problem that stand 

in the way of the element creation. In this work we 

present an attempt that points in the direction of 

creating the element matrices for higher order 

elements using simple, Lagrange, and modified 

Lagrange polynomials. The results obtained for the 

test cases indicate the possibilities and limitations on 

those attempts. It is concluded that the modifies 

Lagrange polynomials have a great potential for use in 

elements with high number of nodes and/or high 

number of DOF per node. Nevertheless, they impose a 

high computational cost on the element matrices 

generation. 

 

Keywords: higher order elements, finite element 

analysis 

 

1. INTRODUCTION 

In the past decades, the finite element method has 

grown into a well developed numerical technique that 

can be used to provide accurate and relatively quick 

solution to boundary value problems that describe 

several physical problems. The procedure of the finite 

element model starts by dividing the domain into 

elements that are connected through nodes. Each node 

has degrees of freedom (DOF) that, usually, present 

the value and derivatives of the physical function of 

interest. Then the elements are defined by the 

interpolation functions that describe the change of the 

function within their boundaries. Following that, the 

whole domain description is created by assembling 

the elements and applying the boundary conditions. 

Finally, the problem is solved to obtain the values of 

the DOF of all the nodes. 1, 2 

 

The basic assumption is that as the number of 

elements increase in the domain, the solution 

approaches the exact one. The power of the finite 

element method lies in that it may use simple 

functions, usually polynomials, to describe the change 

of the target function inside an element, and then use 

that to describe the change in the whole domain by 

assembling the different elements that cover the 

domain. 

 

Another approach to reach higher accuracy is to 

increase the order of each of the elements used in the 

model which reduces the need for higher number of 

elements (p-version finite element). Higher order 

elements may be generated by using more nodes in 

the element, using more complex functions, or by 

hierarchical elements. 3, 4, 5, 6 

 

Most of the work performed for the solution of the 

finite element problem is algorithmic, that enabled the 

excessive use computers and the production of 

computer packages that can manipulate several 

physical problems with complex domain geometries. 

Nevertheless, in the core of all finite element codes, 

lies the element matrices. The element matrices are 

generated through the knowledge of the mathematical 

model that describes the physical problem and the 

selection of the interpolation functions, shape 

functions. Equipped with those two pieces of 

information, you may generate the element matrices 

for any physical problem. However, the generation of 

a general element is still far from algorithmic. 7 

 

A special problem faces the generation of the finite 

element model is the selection of the interpolation 

function that satisfies the prescribed degrees of 

freedom at the nodes 5, 6, 8. Many of the problems 

solved involved the selection of functions that are 
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published in the literature most of which are the so 

called Lagrange Polynomials. The Lagrange 

polynomials possess a preferred characteristic that 

they have the value of one at a specific point, node, in 

the domain and the value of zero at all other nodes. 

When the DOF involve derivatives of the function, 

the Lagrange polynomials should be selected to 

satisfy the condition that they have the slope of one at 

the associated node and zero at the others as well. 

However, it is quite difficult to find the Lagrange 

polynomials that may be used in a general problem 

that is why they may be generated by using classical 

interpolation techniques. 

 

The classical interpolation techniques require the 

evaluation of the polynomial coefficients by forcing 

the polynomial to satisfy the boundary conditions, 

thus, requiring the solution of a set algebraic equation, 

hence, the inversion of a matrix. The matrix inversion 

process is a straight forward numerical technique; 

however, as the number of variables increase, the 

matrix eventually becomes singular because of the 

round-off errors. 9, 10 

 

Another challenge that faces the creators of finite 

element models is the performance of integration. The 

element matrices are generated by integrating the 

shape functions or their derivatives over the element. 

In many simple cases, the integration is readily 

available by hand or using symbolic manipulators. 

However, in more practical cases, numerical 

integration is required which, in turn, introduces 

errors to the resulting element models. 

 

In the past years, several research articles were 

published, mostly by mathematics oriented 

researchers, about the topic of generating higher order 

polynomials, shape functions, for applications in the 

finite element models 5, 6, 8, 11, 12. Such research, 

among many others not cited here, accomplished a 

great task in the direction of generalizing the 

automation of finite element model generation. 

Following that, an excellent attempt for the 

automation was presented in 7 using the symbolic 

manipulator Mathematica® and an accompanying 

package AceGen®.  

 

None of the research reviewed by the author presented 

a straight-forward methodology that may be used by 

the engineers who need to create finite element 

models on numerical manipulators, thus, in the 

following work, we will be attempting to describe a 

generalize procedure for the generation of the finite 

element matrices with an eye on elements with large 

numbers of nodes and degrees of freedom. We will 

start by describing a classical method of generating 

the matrices and creating the shape functions, then we 

will move towards describing attempts to generate a 

general method for performing exact integration for 

generating element matrices. Following that, we will 

describe the attempts using Lagrange polynomials to 

avoid matrix inversion, finally, modifies Lagrange 

polynomials will be created to enable to the creation 

of different finite element problems. 

 

The main purpose of this work is providing a 

methodology that may by applied using numerical 

manipulators, especially open source, to generate the 

element matrices that may be used by researchers 

without the need for commercial packages or 

commercial symbolic manipulators. 

 

2. CLASSICAL APPROACH 

2.1. Interpolation Polynomials – Shape Functions 

The finite element model starts by assuming the 

solution of the unknown function in terms of an 

interpolation polynomial that satisfies the values of 

the degrees of freedom at the nodes of the element. In 

most text, these functions are denoted the letter N 

such that: 

 
f (x)= f 1N1(x)+f 2 N2(x)+...  

 

Where fi are the values of the function at node i and 

Ni(x) are polynomials that have the value of one at the 

corresponding node and zero at every other node. The 

above relation may be written as: 

f (x)= ⌊N1(x) N2(x) ...⌋{
f 1

f 2

⋮ }= ⌊N (x)⌋{δ }

 
 

The first problem that faces the researcher who wants 

to create a new finite element model is to find and 

select the polynomials that may be used for the 

problem. However, that is not a great problem for low 

order elements since the polynomials are readily 

available in many texts. Nevertheless, coding them 

may involve mistyping which will require debugging 

of the code. On the other hand, it becomes a bit 

inconvenient to change the number of nodes per 

element to test the effect of higher, or lower, order 

elements. Thus we may use another way of defining 

the polynomials that can reduce both problems, that is 

by using regular simple polynomials such that: 
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f (x)= a0+a1 x+a2x
2
...= ⌊1 x x

2
...⌋{

a0

a1

a2

⋮
}= ⌊H (x)⌋{a}

 
Where ai are constants, generalized coordinates that 

should be determined for the function to satisfy the 

given values. To do that we will need to set a number 

of equations and solve them to find those values, thus: 
f (x1)= f 1= ⌊H (x1)⌋{a}

f (x2)= f 2= ⌊H (x2)⌋{a}

f (x3)= f 3= ⌊H (x3)⌋{a}
⋮  

Which may be written as: 

[
⌊H (x1)⌋

⌊H (x2)⌋

⌊H (x3)⌋
⋮

]{
a0

a1

a2

⋮
}={

f 1

f 2

f 3

⋮
}

[T ]{a}= {δ }  
Which gives: 

{a}= [T
− 1

] {δ }

f (x)= ⌊H (x)⌋[T− 1
] {δ }  

It can be readily proven that: 

⌊N( x)⌋= ⌊H (x)⌋[T− 1]  
 

Thus using this procedure we were able to obtain the 

polynomials for any number of degrees of freedom 

without having to look them up in literature or 

enduring the problems of mistyping them into the 

code. However, nothing comes for free; using this 

method will involve matrix inversion which will 

become ill-conditioned as the number of degrees of 

freedom increase. 

 

If the degrees of freedom of the element involve the 

derivatives of the function, we may adjust the above 

procedure. Given the value of the function fi and the 

fist derivative f’i, for example, we may write: 

f ' (x)= ⌊H ' ( x)⌋{a}= ⌊0 1 2x ...⌋{
a0

a1

a2

⋮
}

 
Then the [T] matrix may be constructed such that: 

[T ]= [
⌊H (x1)⌋

⌊H ' (x1)⌋

⌊H (x2)⌋

⌊H ' (x2)⌋
⋮

]
 

In this case, the number of degrees of freedom per 

element will be equal to twice the number of nodes 

and the function Ni(x) will appear in pairs. The first 

function of the pair will have a value of one at its 

corresponding node while the slope at that node is 

zero, and has a value and slope of zero at every other 

node. Meanwhile, the second function of the pair will 

have a slope of one and a value of zero at the 

corresponding node while its value and slope are 

equal to zero at every other node. 

 

Note that, in both cases above, the order of the 

polynomial terms in the H(x) matrix does not affect 

the resulting shape functions because they are going 

to be rearranged using the T matrix. 

 

2.2. Element Matrices 

Each finite element problem will generate a set of 

matrices for each element. These matrices are derived 

from the physical model that is usually presented in 

the form of a differential equation. The matrices are 

constructed by integrating some derivative of the 

function that usually appears in the form: 

ke= ∫
x1

x2

Q(x)D
m
(⌊N(x)⌋)T

D
m
(⌊N( x)⌋)dx

 
Where Q(x) is some function that describes the 

physical properties of the problem, Dm(.) is a 

differential operator that differentiates the function 

f(x) m times. For example, in mechanics of material, 

the finite element matrix for a bar in static problem 

may be obtained using: 

ke= ∫
x1

x2

E(x) A(x){N ' ( x)}⌊N ' (x)⌋dx

 
Where E(x) and A(x) are the modulus of elasticity and 

the cross-section area respectively. For simple 

problems, the above integral may be performed by 

hand or using symbolic manipulators. However, it is 

more convenient to use numerical integration in order 

to add flexibility to the programming. Nevertheless, 

some cases will not allow for hand or symbolic 

manipulators’ integration, thus it is common to find 

numerical integration routines associated with any 

finite element program. One of the popular techniques 

used for numerical integration is the Gauss-Legendre 

quadrature which produces almost exact integration 

for polynomials that may reach up to 24th order. 12 

 

2.3. 2-D Problems 

In 2-D problems, the interpolation polynomials should 

include combinations of the x and y coordinates. To 

identify the terms, the common practice is to select 

them from what is known as the Pascal triangle (See 

Figure 1). The number of terms selected should be 
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equal to the number of degrees of freedom and it is 

recommended that the terms should create a 

symmetric shape in that triangle. 

 

 
Figure 1. Pascal triangle 

 

The Pascal triangle is quite handy in many problems, 

however, if you strict your work to using the full 

polynomials in both directions, then the generation of 

the terms becomes quite straight forward by 

multiplying both x and y-polynomials. For example, 

for a quadrilateral element with a single degree of 

freedom per node, we need a linear polynomial in 

each of the directions, hence, we may write: 

H
*
(x, y)={1y}⌊1 x⌋=[1 x

y xy]
→H ( x, y)= ⌊1 x y xy⌋

 
Then we proceed with the H(x,y) vector just as in the 

1-D cases: 

[T ]= [
⌊H (x1 , y1)⌋

⌊H (x2 , y2)⌋
⋮ ]

 
From which we obtain: 

⌊N( x, y)⌋= ⌊H (x, y)⌋[T− 1]  
Note, again, that the order of the polynomial terms in 

the H vector will not affect the resulting shape 

functions similar to what we had in the 1-D problems. 

At this point, we still have both problems when 

generating the higher order elements, namely, the 

matrix inversion and the numerical integration. In the 

following section, we will attempt generating the 

matrices using exact integration to avoid the 

numerical integration problem. 

 

3. EXACT INTEGRATION 

To avoid the errors introduced by the numerical 

integration, we may resolve to exact integration using 

symbolic manipulators (wxMaxima® , Mathematica® 

, Mable® , etc …) but then we are back to the 

problem of rewriting the element matrices into our 

code, with all the problems that may include, or write 

the whole finite element model using the symbolic 

package which is normally extremely slow when it 

comes to numerical manipulations compare to 

numerical coding packages (Octave® , Matlab® , etc 

...) or programming languages (Fortran, C++, etc …). 

Thus, we resolve to write an algorithm to perform the 

exact integration on the numerical package for 

specific elements with unknown number of degrees of 

freedom. This is where the H(x) row-matrix becomes 

very handy. Since the row-matrix is composed of 

simple polynomial terms, their differentiation, and 

later integration, is readily evaluated. 

 

Let’s examine the case of a bar element with n nodes 

(and n degrees of freedom). For the bar element, the 

element matrix, stiffness matrix, is evaluated using 

the integration: 

ke= ∫
x1

x2

EA{N' (x)}⌊N ' (x)⌋dx

 
For the sake of the illustration, we will assume that 

the modulus of elasticity and the cross-section area 

are constants, thus, we may write: 

ke= EA∫
x1

x2

[T
− 1

]
T
{H ' (x)}⌊H ' (x)⌋[T− 1

]dx

 
But, the transformation matrix is also constant, thus, it 

may be dragged out of the integration leaving us with 

the derivative of the H(x) vector. 

ke= EA [T
− 1

]
T∫

x1

x2

{H ' (x)}⌊H ' (x)⌋dx[T
−1

]

 
In this case, the T matrix may be given as: 

[T ]= [
⌊H (x1)⌋

⌊H (x2)⌋
⋮

⌊H (xn)⌋
]

 

If we examine the terms of the H(x) vector, we may write: 

⌊H (x)⌋= ⌊1 x x
2

...⌋    or    hi= x
i− 1

   i= 1,2,3,...,n  
Thus the first derivative may be written as: 

⌊H ' (x)⌋= ⌊0 1 2x ...⌋
    or    

h' i=
0   i= 1

(i− 1)xi− 2   i = 2,3,... ,n
 

http://www.ijtsrd.com/


International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD  |  Available Online @ www.ijtsrd.com |  Volume – 2  |  Issue – 6  | Sep-Oct 2018    Page: 512 

Hence, we may write the matrix: 
{H ' (x)}⌊H ' (x)⌋= [G(x)]

where

gij= h' i h' j=
0  when i∨ j= 1

(i− 1)( j− 1) x
( i− 2)+( j− 2)

   i , j= 2,3,... ,n
 

From that, we may get the integration: 

ke= EA [T
− 1

]
T∫

x1

x2

[G(x)]dx[T
− 1

]= EA [T
− 1

]
T
[G

*
][T

−1
]

where

gij
*
=

0 when i∨ j= 1

(i− 1)( j− 1)

(i− 2)+( j− 2)+1
(x2

( i− 2)+( j− 2)+1
− x1

( i− 2)+( j− 2)+1
)
    i , j= 2,3,... ,n

 
 

Similarly, for any 1-D problem involving any derivative, we may readily obtain the general term for the G 

matrix and perform the integration to obtain the G* matrix. 

 

Let’s examine the case of a beam element with n nodes (and 2n degrees of freedom). For the beam element, the 

element matrix, stiffness matrix, is evaluated using the integration: 

ke= ∫
x1

x2

EI {N ' ' (x)}⌊N' ' (x)⌋dx

 
For the sake of the illustration, we will assume that the modulus of elasticity and the cross-section second 

moments of area are constants, thus, we may write: 

ke= EI ∫
x1

x2

[T
−1

]
T
{H' ' (x)}⌊H ' ' (x)⌋[T− 1

]dx

 
But, the transformation matrix is also constant, thus, it may be dragged out of the integration leaving us with 

the derivative of the H(x) vector. 

ke= EI [T
−1

]
T∫

x1

x2

{H ' ' (x)}⌊H ' ' (x)⌋dx[T
− 1

]

 
 

In this case, the T matrix may be given as: 

[T ]= [
⌊H (x1)⌋

⌊H ' (x1)⌋

⌊H (x2)⌋

⌊H ' (x2)⌋
⋮

⌊H (xn)⌋

⌊H ' (xn)⌋
]

 
 

If we examine the terms of the H(x) vector, we may write: 

⌊H (x)⌋= ⌊1 x x
2

...⌋    or    hi= x
i− 1

   i= 1,2,3,...,n  
 

Thus the second derivative may be written as: 
⌊H ' ' (x)⌋= ⌊0 0 2 6x ...⌋

    or    

h' ' i=
0   i= 1,2

(i− 1)(i− 2) xi−3   i= 3,4,. .. ,n
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Thus, we may write the matrix: 

{H ' ' (x)}⌊H ' ' (x)⌋= [G(x)]
where

gij= h' ' i h' ' j=
0   when i∨ j = 1,2

(i− 1)(i− 2)( j− 1)( j− 2) x
( i− 3)+( j− 3)

   i , j= 3,4,. .. ,n
 

 

From that, we may get the integration: 

ke= EI [T
− 1

]
T∫

x1

x2

[G(x)]dx[T
− 1

]= EA [T
− 1

]
T
[G

*
][T

−1
]

where

gij
*
=

0 when i∨ j= 1,2

(i− 1)(i− 2)( j− 1)( j− 2)

( i− 3)+( j− 3)+1
( x2

( i−3)+( j− 3)+1
− x1

( i− 3)+( j− 3)+1
)
    i , j= 3,4,... ,n

 
 

For 2-D problems, the problem becomes a little more complex. The general term of the H(x,y) vector will 

depend on the order at which we select the terms from the Pascal’s triangle. For illustration, let’s assume that 

we are going to generate a rectangular element for plate bending that ensures continuity of slope (C1 element). 

In this case, the number of nodes in the element may be selected to be n2 where n is the number of nodes per 

side of the element (n=2,3,4, …) in this case the number of degrees of freedom per element will be 4n2, and the 

x and y polynomials, each, will be of 2n-1 order. We may write: 

[H
*
(x , y)]=[

1 x x
2

... x
2n− 1

y xy x
2
y ... x

2n− 1
y

⋮ . . ... ⋮

y
2n− 1

x y
2n− 1

x
2

y
2n− 1

... x
2n− 1

y
2n− 1]

 
 

Thus, we may write the H(x,y) vector as: 

⌊H (x, y)⌋= ⌊1 x ... x2n− 1 y xy ... x2n− 1 y2n− 1⌋
 

 

Whose general term may be given by:  

hk= hij
* = x j− 1 yi− 1  where  k= j +2n(i− 1),   i , j= 1,2,... ,2n

 
 

And the derivatives of the H vector, may be written as: 

hk , xx= ( j− 1)( j− 2) x
j− 3

y
i− 1

hk, yy= (i− 1)( i− 2) x
j− 1

y
i− 3

hk ,xy= ( j− 1)( i− 1) x
j− 2

y
i− 2

k= j +2n(i− 1)
 

 

The element stiffness matrix for the static loading problem of thin plates may be written as: 

ke= ∫
x1

x2

∫
y1

y2

[T
− 1

]
T [C]

T
[Q][C][T−1

]dydx

 

http://www.ijtsrd.com/


International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD  |  Available Online @ www.ijtsrd.com |  Volume – 2  |  Issue – 6  | Sep-Oct 2018    Page: 514 

Where: 

[T ]
4 n

2
× 4n

2=[
⌊H (x1 , y1)⌋

⌊H x(x1, y1)⌋

⌊H y(x1, y1)⌋

⌊H xy(x1, y1)⌋

⌊H (x2 , y2)⌋

⌊H x(x2, y2)⌋

⌊H y(x2, y2)⌋

⌊H xy(x2, y2)⌋
⋮

⌊H (x
n

2 , y
n

2)⌋

⌊H x(x
n

2 , y
n

2)⌋

⌊H y(x
n2, y

n2)⌋

⌊H xy(x
n2, y

n2)⌋

]
 

 

And: 

[C ]
3× 4 n

2=[
⌊H xx( x, y)⌋

⌊H yy(x , y)⌋

2⌊Hxy(x , y)⌋]
 

 

Whose general term may be written as: 
c1k= hk , xx

c2k= hk , yy

c3k= hk , xy

k= 1,2,... ,4n
2

 
 

[Q] is the plate stiffness which may be written, for the sake of compactness, in the form: 

[Q]=[
a b 0

b a 0

0 0 c] 
 

The matrix [G] may be written as: 

[G]= [C]T [Q][C]  
 

where the general term may evaluated by: 

gkl= a(hk,xxhl , xx+hk,yyhl , yy)+b(hk, yyhl , xx+hk,xxhl ,yy)+4chk,xyhl , xy  
 

Let’s now examine each term. 

hk, xx hl , xx= ( jk− 1)( j k− 2)( j l− 1)( j l− 2)x jk+ jl− 6 yi k+i l− 2

 
hk, yy hl , xx= (ik− 1)(ik− 2)( j l− 1)( j l− 2) x j k+ j l− 4 yik+i l− 4

 
hk,xx hl , yy= ( jk− 1)( jk− 2)(i l− 1)(i l− 2) x j k+ j l− 4 yik+i l− 4

 

hk, yy hl , yy= (ik− 1)(ik− 2)(il− 1)(i l− 2)x jk+ j l−2 yi k+i l− 6

 
hk, xy hl , xy= ( jk− 1)(ik− 1)( j l− 1)(i l− 1)x jk + j l− 4 yik+i l− 4
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Where 

1
12

1
12

1

1
12

1
12

1

+
+n

jl
=i

+
+n

l
mod=j

+
+n

jk
=i

+
+n

k
mod=j

l
l

l

k
k

k

−








 −

−








 −

 

 

Performing the integration, we get: 

α 1= ∫
x1

x2

∫
y1

y2

hk ,xx hl , xx dydx=
( jk− 1)( jk− 2)( j l− 1)( j l− 2)

( jk+ j l− 5)(ik+i l− 1)
(x2

jk+ j l− 5
− x1

jk+ j l− 5
)( y2

ik+il− 1
− y1

ik+i l−1
)

 
 

Similarly: 

α 2= ∫
x1

x2

∫
y1

y2

hk, yy hl , xx dydx=
(ik− 1)(ik− 2)( j l− 1)( j l− 2)

( jk+ j l− 3)(ik+i l− 3)
(x2

jk+ j l− 3
− x1

jk+ jl− 3
)( y2

ik+i l− 3
− y1

ik+ il− 3
)

 

α 2= ∫
x1

x2

∫
y1

y2

hk, yy hl , xx dydx=
(ik− 1)(ik− 2)( j l− 1)( j l− 2)

( jk+ j l− 3)(ik+i l− 3)
(x2

jk+ j l− 3
− x1

jk+ jl− 3
)( y2

ik+i l− 3
− y1

ik+ il− 3
)

 

α 4=∫
x1

x2

∫
y1

y2

hk, yyhl , yy dydx=
(ik− 1)(ik− 2)( il− 1)(i l− 2)

( jk+ j l− 1)(ik+il− 5)
(x2

jk+ jl− 1
− x1

jk+ j l− 1
)( y2

ik+i l− 5
− y1

ik+i l− 5
)

 

α 5= ∫
x1

x2

∫
y1

y2

hk,xy hl , xy dydx=
( jk− 1)(ik− 1)( j l− 1)(i l− 1)

( jk+ j l− 3)(ik+i l− 3)
(x2

jk+ j l−3
− x1

jk+ j l− 3
)( y2

ik+ il− 3
− y1

ik+i l− 3
)

 
 

From which, we may get the integral of the general term of the [G] matrix in the form: 

∫
x1

x2

∫
y1

y2

gkl dydx= gkl

*
= a(α 1+α 4)+b(α 2+α 3)+4Cα 5

 
 

In both the 1-D and 2-D problems illustrated above, we were able to create the element matrices exactly using 

the trick of integrating the H vector and its derivatives. However, the limiting condition on generating high 

order elements will always be the inversion of the T matrix which will become ill-conditioned with higher order 

elements. For example, the plate bending element described above worked only until the number of nodes 

became 16 (64 DOF) (7th order polynomial in each of the x and y directions) using double precision numbers 

on the Octave numerical manipulator. Hence, a search for another technique was required. 

 

4. LAGRANGE POLYNOMIALS 

4.1. 1-D problems 

The Lagrange interpolation polynomial for an (n-1)th order polynomial, which may be used when n degrees of 

freedom are give, may be written in the form: 

f (x)=∑
i= 1

n

f i∏
j= 1
j≠ i

n− 1 x− x j

xi− x j

= ⌊N1(x) N2(x) ... Nn(x)⌋{
f 1

f 2

⋮
f n

}
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Where: 

Ni (x)=∏
j=1
j≠ i

n− 1 x− x j

xi− x j

 
Thus, we may obtain the first derivative in the form: 

N' i (x)=∑
k= 1

k≠ i

n− 1
1

xi− xk

∏
j= 1
j≠ k

j≠ i

n−1 x− x j

xi− x j

 
We may also obtain further derivatives for use in the element equation, however, let’s remember that the 

function interpolation is based on the values of the function, thus, if we need to have any of the derivatives of 

the function as a degree of freedom, we cannot use this interpolation method. Nevertheless, we have obtained 

the shape functions without having to go through the matrix inversion problem described in the previous 

section. On the other hand, performing the exact integration will not be readily available for the general term 

since it now involves multiplication of several linear terms. Luckily, as mentioned earlier, the Gauss quadrature 

integration provides high degree of accuracy for a relatively high order polynomial integration. 

 

Note that he order of the Lagrange polynomials used above has to coincide with the order of the node 

numbering unlike the cases we described in sections 2 and 3 above. 

 

4.2. 2-D Problems 

With the same advantages and disadvantages of the 1-D problem, the derivation of the shape functions for a 2-

D problem comes straight forward by multiplying the polynomials in the x and y directions. 

f (x, y)=∑
i= 1

nx

∑
j= 1

ny

f ij∏
k=1
k≠ i

nx− 1
x− xk

xi− xk

∏
l= 1
l ≠ j

ny− 1
y− yl

y j− yl

= ⌊N11(x , y) N12(x, y) ... Nnxny
(x , y)⌋{

f 11

f 12

⋮
f n

x
n

y

}
 

In a vector, we usually use a single index to point to the different element, thus, we need to create a relation 

between the vector index and the i and j counters of the nodes counters in a 2-D element. A simple relation for 

counting the nodes in the x-direction first would be in the form: 
m= i+( j− 1)nx

i= 1,2, ... ,nx

j= 1,2,. .. ,ny

m= 1,2,. ..,nx× ny  
Thus we may write the general shape function in the form: 

Nm(x , y)= Nij (x , y)=∏
k= 1

k≠ i

nx− 1
x− xk

xi− xk

∏
l= 1

l≠ j

ny− 1
y− yl

y j− yl

 
For which we may evaluate the first derivatives to be: 

Nm,x(x, y)= Nij ,x(x , y)= ∑
p= 1
p≠ i

nx−1
1

xi− xp

∏
k= 1

k≠ p
k≠ i

nx− 1
x− xk

xi− xk

∏
l = 1

l≠ j

ny− 1
y− yl

y j− yl

 

Nm, y(x , y)= N ij , y(x, y)=∏
k= 1

k≠ i

nx− 1
x− xk

xi− xk

∑
q= 1
q≠ j

ny− 1
1

y j− yq

∏
l= 1

l≠ q
l≠ j

ny− 1
y− yl

y j− yl

 

Nm,xy(x , y)= Nij , xy(x, y)= ∑
p= 1
p≠ i

nx− 1
1

xi− xp

∏
k= 1

k≠ p
k≠ i

nx− 1
x− xk

xi− xk

∑
q= 1
q≠ j

ny− 1
1

y j− yq

∏
l= 1

l≠ q
l≠ j

ny− 1
y− yl

y j− yl
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5. MODIFYING THE INTERPOLATION FUNCTION 

Borrowing from the Spline interpolation techniques, we may work around with the Lagrange polynomials to 

obtain polynomials that may include derivatives of the function. In the following, we will work with functions 

that are required to satisfy the value of the function and its first derivative at each node of the element. We will 

start be deriving the cubic polynomial that will fit 2 values and two slopes, then, we will describe the process 

for quintic polynomial, followed by the general approach for obtaining the (2n-1)th polynomial that may be 

used for n-node elements. 

 

5.1. The Polynomials 

Using the similarities we obtained in the 3rd and 5th order polynomial derivation, we will present a 

generalization in the following section. We may write the general relation for a function of the (2n-1)th order 

that uses n pairs of polynomials as: 

f (x)=∑
i= 1

n

Si (x)
 

Where: 

Si (x)= (C1+C2(x− xi))∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

 
This function needs to satisfy the conditions: 

Si (xi)= f i

S' i (xi)= f ' i  
For the first condition, we get: 

C1= f i  
To proceed with the second condition, we get the slopes as: 

S' i (x)= C2∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

+2(C1+C2(x− xi))∑
k= 1

k≠ i

n x− xk

(xi− xk)
2∏

j= 1
j≠ i

j≠ k

n

(x− x j

xi− x j
)

2

 
Substituting: 

S' i (xi)= f ' i= C2+2C1∑
k=1
k≠ i

n
1

xi− xk

 
Which gives: 

C2= f ' i− 2f i∑
k=1
k≠ i

n
1

xi− xk

 
Thus we may write the pair of polynomials as:  

Si (x)=(f i +(f ' i− 2f i∑
k= 1
k≠ i

n
1

xi− xk)(x− xi))∏j= 1
j ≠ i

n

(
x− x j

xi− x j
)

2

 
Rearranging, we obtain: 

Si (x)= f i(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∏j =1
j ≠ i

n

(x− x j

xi− x j
)

2

+ f ' i (x− xi )∏
j=1
j≠ i

n

(x− x j

xi− x j
)

2

 
From which we may write the shape functions as: 

Ni ,1(x)=(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∏j = 1
j ≠ i

n

(
x− x j

xi− x j
)

2

N i ,2(x)= (x− xi)∏
j= 1
j≠ i

n

(
x− x j

xi− x j
)

2

i= 1,2,... ,n  
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In 2-D problems, the interpolation functions will be a straight forward generalization of the above procedure 

giving the function in the form: 

f (x, y)=∑
m= 1

n

Sm(x , y)

n= nx× ny  
Where: 

Sm(x)= (C1+C2(x− xi)+C3( y− y j)+C4(x− xi )( y− y j))∏
k=1

k≠ i

nx

(x− xk

xi− xk
)

2

∏
l= 1

l ≠ j

ny

(y− yl

y j− yl
)

2

 
m= i +( j− 1)∗ nx

i= 1,2,... ,nx

j= 1,2,... ,ny

m= 1,2,. ..,n  
This function needs to satisfy the conditions: 

Sm(xi , y j)= f ij

Sm, x(xi , y j)= f ij , x

Sm, y(xi , y j)= f ij , y

Sm,xy(xi , y j)= f ij , xy  
Which will result in a quartet of shape functions in the form: 

( ) ( ) ( ) 

















−

−












−

−



















−
−−

















−
−−

y
n

jq

=q qj

q
x

n

il

=l li

l
y

n

jp

=p pj

j

x
n

ik

=k ki

im,
yy

yy

xx

xx

yy
yy

xx
xx=yx,N

1

2

1

2

11

1

1
21

1
21  

Nm,2(x , y)= (x− xi)(1− 2( y− y j )∑
p= 1

p≠ j

n
y

1

y j− yp)∏l= 1
l≠ i

nx

(
x− xl

xi− xl
)

2

∏
q= 1
q≠ j

ny

(
y− yq

y j− yq
)

2

 

Nm,3(x , y)=(1− 2(x− xi)∑
k= 1

k≠ i

n
x

1

xi− xk)( y− y j)∏
l= 1
l≠ i

nx

(
x− xl

xi− xl
)

2

∏
q= 1
q≠ j

ny

(
y− yq

y j− yq
)

2

 

Nm,4(x)= (x− xi)( y− y j )∏
l= 1

l≠ i

nx

(x− xl

xi− xl
)

2

∏
q= 1

q≠ j

ny

(y− yq

y j− yq
)

2

 
i= 1,2, ... ,nx

j= 1,2,. .. ,ny

m= 1,2,. ..,nx× ny  
5.2. The Derivatives 

In the problems that make use of the shape functions described in the previous section, the finite element model 

usually requires the first and second derivatives of the shape function to perform the required calculations. In 

this section, we will present those derivatives for the 1-D problem without elaborations. 

Ni ,1(x)=(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∏j =1
j ≠ i

n

(x− x j

xi− x j
)

2

 

Ni ,2(x)= (x− xi )∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

 

N' i ,1(x)=(− 2∑
k= 1
k≠ i

n
1

xi− xk)∏j= 1
j≠ i

n

(
x− x j

xi− x j
)

2

+(1− 2(x− xi)∑
k= 1
k≠ i

n
1

xi− xk)∑l= 1
l≠ i

n

2
x− xl

(xi− xl)
2∏

j= 1
j≠ i
j≠ l

n

(
x− x j

xi− x j
)

2
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N' i ,2(x)=∏
j= 1
j≠ i

n

(x− x j

xi− x j
)

2

+(x− xi)∑
k= 1

k≠ i

n

2
x− xk

(xi− xk)
2∏

j= 1
j≠ i

j≠ k

n

(x− x j

xi− x j
)

2

 
 

N ' ' i ,1(x)= 2(− 2∑
k= 1
k≠ i

n
1

xi− xk)∑l= 1
l≠ i

n

2
x− xl

(xi− xl)
2∏

j= 1
j≠ i
j≠ l

n

(
x− x j

xi− x j
)

2

+(1− 2(x− xi )∑
k= 1

k≠ i

n
1

xi− xk)(∑l= 1

l≠ i

n
2

(xi− xl)
2∏

j= 1
j≠ i

j≠ l

n

(
x− x j

xi− x j
)

2

+∑
l= 1

l≠ i

n

2
x− xl

(xi− xl )
2∑

m= 1

m≠ i
m≠ l

n

2
x− xm

(xi− xm)
2∏

j= 1
j≠ i

j≠ l
j≠ m

n

(
x− x j

xi− x j
)

2

)
 

 

N' ' i ,2(x)= 2∑
k= 1

k≠ i

n

2
x− xk

(xi− xk)
2∏

j= 1
j≠ i

j≠ k

n

(x− x j

xi− x j
)

2

+(x− xi )(∑k= 1
k≠ i

n
2

(xi− xk)
2∏

j= 1

j≠ i
j≠ k

n

(
x− x j

xi− x j
)

2

+∑
k= 1
k≠ i

n

2
x− xk

(xi− xk)
2∑

l = 1
l ≠ i

l≠ k

n

2
x− xl

(xi− xl )
2∏

j = 1

j ≠ i
j≠ k

j ≠ l

n

(
x− x j

xi− x j
)

2

)
 

 

6. NUMERICAL RESULTS 

All the test cases used were confined to generating the element stiffness matrix for different problems for 

isoparametric C0 and C1 continuous elements. The number of nodes were increased and the Eigenvalues of the 

matrix were evaluated until the lowest (negative) Eigenvalue reached an absolute values larger than 10-4 at 

which the element was considered a failure since the matrices investigated were supposed to be positive semi-

definite. The results for the different problems are presented below. 

 

Table 1 presents the change of the values of the minimum Eigenvalue of the stiffness matrix generated for a bar 

element. If we ignore the numbers that have an absolute value less than 10-10 considering them as a numerical 

zero, we may still find that increasing the number of nodes per element start to introduce negative Eigenvalues 

until we reach the failure criterion set in this work as 10-4. Note that, unpredictably, the exact integration 

method failed before the numerical integration at 15 nodes per element. On the other hand, the Lagrange 

polynomial method, which does not use the transformation matrix, was able to produce satisfactory results up 

to 23 nodes per element which approaches the limit of the 12 point numerical integration technique used. 

 

Table 2 presents the results obtained for a beam element. Again we find that the exact integration and numerical 

integration elements, both, failed around the 18 and 16 DOF respectively which coincides with the number of 

DOF at which failure occurred in the bar element. Meanwhile, the Modified Lagrange method was able to 

continue all the way up to 24 DOF which reaches the limit imposed by the numerical integrator. 

 

Table 1. Change of the lowest Eigenvalue for the Bar problem using different methods 

Number of Nodes Classical Method Exact Integration Lagrange Polynomials 

2 0.0000 0.0000 0.0000 

5 0.0000 1.3550 * 10-15 -3.2092 * 10-14 

13 -4.3771 * 10-11 1.8269 * 10-8 -4.7237 * 10-9 

14 -3.5311 * 10-10 1.2446 * 10-6 -8.3456 * 10-9 

15 -6.7339 * 10-9 -7.2761 * 103 - Failure -1.7247 * 10-8 

16 -4.0141 * 10-5  -6.8237 * 10-8 

17 -0.0063877 - Failure  -2.7224 * 10-7 

24   -0.000284 – Almost! 
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Table 2. Change of the lowest Eigenvalue for the Beam problem using different methods 

Number of Nodes (DOF) Classical Method Exact Integration Modified Lagrange Polynomials 

2 (4) -1.8447 * 10-15 -1.6821 * 10-15 -4.0007 * 10-16 

5 (10) -2.7423 * 10-10 -2.3674 * 10-10 -7.2653 * 10-13 

6 (12) -2.7096 * 10-8 -4.4350 * 10-10 -3.3600 * 10-10 

7 (14) 9.5001 * 10-8 4.6870 * 10-8 -1.4082 * 10-9 

8 (16) -2,4339 - Failed -2.7862 * 10-4 -1,0945 * 10-9 

9 (18)  -0.045658 - Failed -3.2284 * 10-8 

11 (22)   -7.7276 * 10-7 

12 (24)   -2.9915 * 10-5 

 

Table 3. Change of the lowest Eigenvalue for the Plate problem using different methods 

Number of Nodes 

(DOF) 
Classical Method Exact Integration 

Modified Lagrange 

Polynomials 

4 (16) -2.4664 * 10-16 -9.9632 * 10-16 -4.2013 * 10-15 

9 (36) -4.0203 * 10-13 -4.3150 * 10-13 -1.1133 * 10-14 

16 (64) -2.1111 * 10-9 -3.6665 * 10-10 9.6377 * 10-16 

25 (100) 
-2.6320 * 10+5 - 

Failed 

-1.9562 * 10+7 - 

Failed 
-2.7317 * 10-14 

100 (400)   -4.5663 * 10-6 

121 (484)   -2.1076 * 10-4 – Almost! 

144 (576)   -0.023264 - Failed 

Table 3 presents the results for a plate bending problem. The same patterns observed in the bar and beam 

elements can be observed in the plate problem for the modified Lagrange case. 

 

7. CONCLUSIONS 

Several problems were examined in this work to 

demonstrate the limitations imposed on the creation of 

super elements with high number of nodes and 

degrees of freedom. The element matrices were 

generated using simple, Lagrange, and modified 

Lagrange polynomials and the integration was 

performed numerically using Gauss-Lagrange 

quadrature or exact when possible. Problems 

involving 1-D elements with 1 or 2 DOF per node and 

2-D problems with 4 DOF per node were examined 

by increasing the number of nodes per element until 

the lowest (negative) Eigen value of the stiffness 

matrix had an absolute value greater than 10-4. From 

the results obtained above we may conclude the 

following: 

 

➢ Automated generation of higher order 

isoperimetric C0 and C1 continuous element model 

was enabled using an open source numerical 

manipulator (Octave®) using the different 

methods presented in this work. 

➢ Generating higher order elements is 

computationally expensive compared to lower 

ones. Thus, the h-version is more efficient for the 

same accuracy than the p-version. 

 

 

➢ Using numerical integration to evaluate the 

element matrices is efficient and accurate enough 

for most practical purposes 

➢ Using Lagrange and modified Lagrange 

polynomial increases the stability of the results for 

higher order element problems when they become 

a necessity to use. In such cases, the limitation on 

the results’ accuracy will be imposed by the 

accuracy of the numerical integration scheme. 

 

Further work with the modified Lagrange 

polynomials, proposed in this work, is needed to 

enable the inclusion of higher order derivatives in the 

interpolation polynomials. Such research will help in 

the generation of elements with the needed derivatives 

without falling into the trap of the ill-conditioned 

transformation matrix.  
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