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ABSTRACT 

We designed a simulation of an intracellular 

differential equation model of the dynamics of 

malaria with immune control and treatment which 

considered malaria parasites in the liver and blood. 

We considered transmission dynamics of malaria and 

the interaction between the infection in the liver and 

blood. The disease free equilibrium of our model was 

asymptotically stable when the basic reproduction 

number is less than one and unstable when it is greater 

than one. Numerical simulations show that if the 

immune response is strong with effective treatment, 

malaria infection will be cleared from an infectious 

human host. A treatment strategy using highly 

effective drugs against malaria parasites with strong 

immune response can reduce malaria progression and 

control the disease. 
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I. INTRODUCTION 

Malaria is a life threatening mosquito borne blood 

disease caused by a plasmodium parasite and children 

are particularly susceptible to the disease. In 2015, an 

estimated 306,000 children under 5 years of age were 

kills mostly in the African region (WHO World 

Malaria Report, 2015). Once transmitted to the human 

by a blood feeding Anopheles mosquito, the parasites 

initially multiply in the human liver, before they 

progress to the pathologic blood stage. Immediately 

the parasite (sporozoites) first enters the human host, 

there is a pre- erythrocytic development. After 

inoculation into a human by female anopheles 

mosquito, sporozoites invade hepatocytes in the host 

liver and multiply there for 5 – 12 days, forming 

hepatic schizonts. These then burst, liberating 

merozoites into the bloodstream where they  

 

subsequently invade red blood cells. These blood 

infections can last for months, and only once sexual 

precursor cells, the gametocytes have matured, the 

malaria parasite are able to leave the human host and 

to continue the life cycle in the insect vector. In the 

mosquito midgut, the parasite are able to differentiate 

into their sexual forms, the female macrogametes and 

male microgametes, and to then undergo sexual 

reproduction in order to newly combine their 

chromosomal sets. The midgut phase lasts for 

approximately 20 hours and includes two phases of 

stage conversion, the rapid conversion gametocyte 

into fertile gametes upon activation and the 

conversion of zygotes into motile and invasive 

ookinates that once formed, immediately exit the gut 

lumen by traversing the midgut epithelial cell layer. 

Subsequently, the ookinates settle down at the basal 

site of the midgut epithelium and convert to sessil 

oocysts in which sporogonic replication takes place. 

This replication phase requires roughly 2 weeks and 

results in the formation of infective sporozoites that 

migrate to the salivary glands to be released into the 

human dermis with the next bit of the mosquito 

wherewith the life cycle of plasmodium is completed 

(Aly et al, 2009; Ghosh and Jacobs-Lorena, 2009; 

Kuehn and Pradel, 2010; Menard et al, 2013; Bennink 

et al, 2016). 

 

Sexual precursor cells the intraerythrocytic 

gametocytes develop in the human blood in response 

to the stress factor (Pradel, 2007;Kuehn and Pradel, 

2010). A time period of about 10 days is required for 

gametocyte development in P. falciparum, during 

which they pass five morphological stages. Once the 

gametocytes mature and is ingested with the blood 

meal of an Anepheles mosquito, they are activated in 

the mosquito midgut by environmental stimuli, and 

gametogenesis is initiated. Signals inducing gamete 
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formation include a drop of temperature by 

approximately 50𝐶 which is mandatory for 

gametocyte activation and the presence of the 

mosquito derived molecule Xanthurenic acid (XA), a 

metabolic intermediate of the tryptophan catabolism. 

An additional trigger of game to genesis is the 

increase of extracellular pH from 7.2 to about 8 

(Kawamoto et al, 1991;Billker et al, 1997; Garcia et 

al, 1998; Sologub et al, 2011). 

 

The periodic bouts of fever that occur in the malaria 

coincide with the synchronized rupture of 

plasmodium-infected red blood cells. This causes the 

release of parasites en masses into the blood stream, 

along with pigments and toxins that have accumulated 

inside the red blood cells as a result of the parasites 

metabolic activities. The presence of large quantities 

of parasite material in the blood triggers a dramatic 

immune response, mediated by the secretion of 

cytokine modules by the cells of the immune system 

(Hommel and Gilles, 1998). Some cytokines such as 

tumor necrosis factor (TNF), interferon gamma, 

interleukin12 and interleukin 18 enhances the immune 

response, stimulating macrophages and other immune 

cells to destroy parasites by phagoytosis and by the 

production of toxins. Other cytokines include 

interleukin 4, interleukin 10 and TGF-beta help to 

regulate the immune response by dampening these 

effects (Malaguarnera and Musumeci, 2002). 

 

II. Related Literatures 

Chi-Johnston (2012) develops and analyze a 

comprehensive simulation model of P. falciparum 

within-host malaria infection and transmission in 

immunologically-naïve humans. There model 

incorporates the entire lifecycle of P. falciparum 

starting with the asexual blood stage forms 

responsible for disease, the onset of symptoms, the 

development and maturation of sexual stage forms 

(gametocytes) that are transmissible to Anopheles 

mosquitoes, and human to mosquito infectivity. The 

model components were parameterized from malaria 

therapy data and from arrange of other studies to 

simulate individual infections such that the ensemble 

is statistically consistent with the full range of patient 

responses to infection. Human infectivity was 

modeled over the course of untreated infections and 

the effects were examined in relation to transmission 

intensity expressed in terms of the basic reproduction 

number. Adamu (2014) developed a mathematical 

model to study the dynamics of malaria disease in a 

population and consideration were given to the 

interaction between the parasites and the host (human 

beings), such that the susceptible and the infected 

classes were allowed to interact freely without 

quarantining any of the either classes. In their model, 

first order equation that describes the dynamics of the 

susceptible class and the infected class under the 

influence of the parasite was used. The result of the 

qualitative and stability analysis showed that if 

preventive measure is not put in place, the susceptible 

and infected classes will reach a stable equilibrium 

point which can be disastrous to the population and 

they recommended specific measures of controlling 

the disease. 

 

Johansson and Leander (2010) used three 

compartment of susceptible, infectious and recovered 

in their work and they showed that the recovered are 

neither quarantined nor removed from the entire 

population rather they enter the susceptible class 

again. Tabo et al (2017) developed a mathematical 

model which considers the dynamics of P. falciparum 

malaria from the liver to the blood in the human host 

and then to the mosquito. There results indicated that 

the infection rate of merozoites, the rate of sexual 

reproduction in gametocytes, burst size of both 

hepatocytes and erythrocytes are more sensitive 

parameters for the onset of the disease. They 

suggested that a treatment strategy using highly 

effective drugs against such parameters can reduce on 

malaria progression and control the disease. There 

numerical simulation shows that drugs with efficacy 

above 90% boost healthy cells and clear parasites in 

human host. However, all these models are limited to 

treatment, non considered treatment and immune 

response. Here, we formulated a more detailed model 

to study the intracellular dynamics of malaria with 

immune control and treatment using mathematical 

model. Our aim is to study the interaction between 

malaria and immune response with treatment measure 

through a mathematical model and carry out a 

sensitivity analysis to determine the parameters that 

controls the disease.   

 

III. MODEL FORMULATION 

3.1. THE ASSUMPTIONS OF THE MODEL 

The disease is spread by transmission through 

mosquito to human interaction; 

 

By immunology memory, the immunity of infected 

/infectious individuals might be rapidly restored when 

they are re exposed to the infection. 
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Individual can loss their immunity when they are not 

continuously exposed to the parasite and go back to 

susceptible. 

Treatment can either be successful or fail. 

 

 
Fig 1: Flow diagram of malaria treatment model 

 

3.2. Variables (Compartments) 

The model is made up of ten (10) compartments 

which comprises of (𝑥), Uninfected hepatocytes (liver 

cells), (𝑝),Free sporozoites (malaria parasites in the 

liver), (𝑦), Infected hepatocytes, (𝑇𝑦), Treated 

infected hepatocytes, (𝑅), Recovered hepatocytes, 

(𝑝1), Free merozites (malaria parasite in the blood), 

(𝐵), Uninfected erythrocytes (red blood cell), (𝐼), 
Infecfed erythrocytes, (𝑇𝐼), Treated infected 

erythrocytes and  (𝑅1), Recovered erythrocytes. 

 

Parameters 

𝜓    recruitment level of uninfectec hepatocytes 

𝑎1  natural death rate of both uninfected, infected, 

and recovered hepatocytes 

𝛽        rate at which hepatocytes are being infected 

𝜇        death rate of malaria parasites (sporozoites) 

𝑎3       rate at which free sporozoite is inoculated into 

the  hepatocyte by mosquitoes 

𝜁        treatment rate of infected hepatocytes 

𝑑1   movement rate of treated hepatocytes to 

recovered class 

𝑎2    natural death rate of erythrocytes (red blood 

cells) 

𝛾     recruitment level of erythrocytes from bone 

marrow 

𝛼      rate at which the uninfected erythrocytes are 

being infected 

𝑎4        rate at which the infected erythrocytes produce 

free parasites (merozoite) 

𝑎5   disease induced death rate of infected 

erythrocytes 

𝑎6   disease induced death rate of infected 

hepatocytes 

𝜙        the rate at which infected hepatoctesproliferate 
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𝜃       the rate at which infected erythrocyte 

proliferate 

𝑑2        rate treatment of the infected erythrocytes 

𝑑3        movement level of infected erythrocytes to the 

recovered class 

𝑘𝑦 rate at which infected hepatocyte produces 

meroziotes 

𝑏3   recovered red blood cells due to immune 

response 

𝑏4       recovered liver cells due to immune response 

𝑏        movement rate of the recovered hepatocytes to 

susceptible class. 

𝑏1      movement rate of the recovered red blood 

cells to susceptible class 

 

3.3. The model equation 
𝑑𝑥

𝑑𝑡
= 𝜓 − 𝑎1𝑥 − 𝛽𝑥𝑝 + 𝑏𝑅 

𝑑𝑝

𝑑𝑡
= 𝑎3𝑦 − 𝜇𝑝 

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑝 + 𝜙𝑦 − 𝜁𝑦 − 𝑎1𝑦 − 𝑎6𝑦 − 𝑘𝑦𝑝1 − 𝑏4𝑦 

𝑑𝑇𝑦

𝑑𝑡
= 𝜁𝑦 − 𝑎1𝑇𝑦 − 𝑑1𝑇𝑦 

𝑑𝑅

𝑑𝑡
= 𝑑1𝑇𝑦 − 𝑎1𝑅 − 𝑏𝑅

+ 𝑏4𝑦                                      (3.1) 
𝑑𝐵

𝑑𝑡
= 𝛾 − 𝛼𝐵𝑝1 − 𝑎2𝐵 + 𝑏1𝑅1 

𝑑𝑝1

𝑑𝑡
= 𝑎4𝐼 − 𝜇𝑝1 

𝑑𝐼

𝑑𝑡
= 𝛼𝐵𝑝1 + 𝜃𝐼 − 𝑑2𝐼 − 𝑎2𝐼 − 𝑎5𝐼 − 𝑏3𝐼 

𝑑𝑇𝐼

𝑑𝑡
= 𝑑2𝐼 − 𝑑3𝑇𝐼 − 𝑎2𝑇I 

𝑑𝑅1

𝑑𝑡
= 𝑑3𝑇𝐼 − 𝑎2𝑅1 − 𝑏1𝑅1 + 𝑏3𝐼 

 

Let the initial conditions be  

𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0, 𝑇𝑦(0) = 𝑇𝑦0, 𝑅(0) = 𝑅0, 𝐵(0)

= 𝐵0, 𝐼(0) = 𝐼0, 𝑇𝐼(0) = 𝑇𝐼0, 𝑅1(0)
= 𝑅10     (3.2) 

 

3.4. Equilibrium state analysis 

The equilibrium state is the uninfected state and for 

malaria infection to manifest, the individual must be 

bitten by an infected mosquito. Also, the rate of 

change in sporozoites and merozoites concentration 

will be positively much faster than that of the cell 

concentration and for it to clear, the rate of change in 

sporozoites and merozoites concentration will be 

negatively much faster than that of the cell 

concentration.  

 

Notice from equation (3.1) that the production rate of 

the parasite (𝑝), from the livercells is proportional to 

the rate at which they are removed and are at 

equilibrium, i.e.,  𝑎3𝑦 − 𝜇𝑝 = 0. So we let 

𝑝 =
𝑎3𝑦

𝜇
 

Also from equation (3.1), we observe that the rate of 

production of the parasite(𝑝1), from the red blood 

cells is proportional to the rate at which the are 

removed and are at equilibrium, i.e., 𝑎4𝐼 − 𝜇𝑝1 = 0. 
So we let 

𝑝1 =
𝑎4𝐼

𝜇
 

Substituting  𝑝 =
𝑎3𝑦

𝜇
and 𝑝1 =

𝑎4𝐼

𝜇
 into equation (3.1) 

reduces the model to eight non linear ordinary 

differential equations and this will make the 

quantitative analysis much easier. Now we rewrite the 

equations as: 
𝑑𝑥

𝑑𝑡
= 𝜓 − 𝑎1𝑥 − 𝛽𝑥

𝑎3𝑦

𝜇
+ 𝑏𝑅 

𝑑𝑦

𝑑𝑡
= 𝛽𝑥

𝑎3𝑦

𝜇
+ 𝜙𝑦 − 𝜁𝑦 − 𝑎1𝑦 − 𝑎6𝑦 − 𝑘𝑦

𝑎4𝐼

𝜇
− 𝑏4𝑦 

𝑑𝑇𝑦

𝑑𝑡
= 𝜁𝑦 − 𝑎1𝑇𝑦 − 𝑑1𝑇𝑦 

𝑑𝑅

𝑑𝑡
= 𝑑1𝑇𝑦 − 𝑎1𝑅 − 𝑏𝑅

+ 𝑏4𝑦                                      (3.3) 
𝑑𝐵

𝑑𝑡
= 𝛾 − 𝛼𝐵

𝑎4𝐼

𝜇
− 𝑎2𝐵 + 𝑏1𝑅1 

𝑑𝐼

𝑑𝑡
= 𝛼𝐵

𝑎4𝐼

𝜇
+ 𝜃𝐼 − 𝑑2𝐼 − 𝑎2𝐼 − 𝑎5𝐼 − 𝑏3𝐼 

𝑑𝑇𝐼

𝑑𝑡
= 𝑑2𝐼 − 𝑑3𝑇𝐼 − 𝑎2𝑇I 

𝑑𝑅1

𝑑𝑡
= 𝑑3𝑇𝐼 − 𝑎2𝑅1 − 𝑏1𝑅1 + 𝑏3𝐼 

 

Because the model s are items of populations and in 

two interacting cell population, that is, the liver cells 

which produces sporozoites and the red blood cells 

which produces merozoites. The liver cell and the red 

blood cell population size at time t are respectively 

represented as  

 

𝑥(𝑡) + 𝑦(𝑡) + 𝑇𝑦(𝑡) + 𝑅(𝑡)

= 𝑁(𝑡)𝑎𝑛𝑑𝐵(𝑡) + 𝐼(𝑡) + 𝑇𝐼(𝑡)
+ 𝑅1(𝑡) = 𝑁1(𝑡) 
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3.5. Existence and Positivity of solutions 

Having that all the parameters in equation (3.1) are 

non negative, we assume a stable population with per 

capita recruitment of susceptible liver cells, 

susceptible red blood cells, death rate of liver cells 

both natural and disease induced, death rate of red 

blood cells both natural and disease induced. At this 

point we normalize the population size of both the 

liver cells and red blood cells to one (1) each and 

show that the system is epidemiologically and 

mathematically well-posed in the feasible region Γ 

given by  

Γ = AL × Ar ⊂ ℝ+
3 × ℝ+

3  

where 

AL = {(𝑥, y, Ty) ∈ ℝ+
3 : N ≤

ψ

a1
}  and Ar

= {(B, I, TI) ∈ ℝ+
3 : N1 ≤

γ

a2
} 

 

Theorem 1: There exists a domain Γ in which the 

solution set {𝑥, 𝑦, 𝑇𝑦, 𝐵, 𝐼, 𝑇𝐼} is contained and 

bounded. 

 

Proof: Given the solution set {𝑥, 𝑦, 𝑇𝑦, 𝐵, 𝐼, 𝑇𝐼} with 

positive initial conditions (3.2), we let the liver 

population be represented as  

𝑥 + 𝑦 + 𝑇𝑦 + 𝑅 = 1                                                 (3.4) 

⟹ 𝑅 = 1 − 𝑥 − 𝑦 − 𝑇𝑦 

while the red blood cell population is represented as 

𝐵 + 𝐼 + 𝑇𝐼 + 𝑅1

= 1                                                        (3.5) 

⟹ 𝑅1 = 1 − 𝐵 − 𝐼 − 𝑇𝐼 

Omitting the equation for 𝑅𝑎𝑛𝑑𝑅1 in our analysis 

gives equation (3) as 
𝑑𝑥

𝑑𝑡
= 𝜓 − 𝑎1𝑥 − 𝛽𝑥

𝑎3𝑦

𝜇
+ 𝑏(1 − 𝐵 − 𝐼 − 𝑇𝐼) 

𝑑𝑦

𝑑𝑡
= 𝛽𝑥

𝑎3𝑦

𝜇
+ 𝜙𝑦 − 𝜁𝑦 − 𝑎1𝑦 − 𝑎6𝑦 − 𝑘𝑦

𝑎4𝐼

𝜇
− 𝑏4𝑦 

𝑑𝑇𝑦

𝑑𝑡
= 𝜁𝑦 − 𝑎1𝑇𝑦

− 𝑑1𝑇𝑦                                                                        (3.6)  
𝑑𝐵

𝑑𝑡
= 𝛾 − 𝛼𝐵

𝑎4𝐼

𝜇
− 𝑎2𝐵 + 𝑏1(1 − 𝐵 − 𝐼 − 𝑇𝐼) 

𝑑𝐼

𝑑𝑡
= 𝛼𝐵

𝑎4𝐼

𝜇
+ 𝜃𝐼 − 𝑑2𝐼 − 𝑎2𝐼 − 𝑎5𝐼 − 𝑏3𝐼 

𝑑𝑇𝐼

𝑑𝑡
= 𝑑2𝐼 − 𝑑3𝑇𝐼 − 𝑎2𝑇I 

 

At this point we let the time derivative of 

AL(t)and Ar(t) along solutions of system (3.2) for 

liver cells and red blood cells respectively be 

calculated thus, 

AL(t) = 𝑥(𝑡) + 𝑦(𝑡)
+ 𝑇𝑦(𝑡)                                            (3.7) 

AL(t) = 𝜓 − 𝑎1𝑥 − 𝛽𝑥
𝑎3𝑦

𝜇
+ 𝑏(1 − 𝐵 − 𝐼 − 𝑇𝐼)

+ 𝛽𝑥
𝑎3𝑦

𝜇
 

+𝜙𝑦 − 𝜁𝑦 − 𝑎1𝑦 − 𝑎6𝑦 − 𝑘𝑦
𝑎4𝐼

𝜇
+ 𝜁𝑦 − 𝑎1𝑇𝑦

− 𝑑1𝑇𝑦 − 𝑏4𝑦 

where  

𝐴𝐿 = 𝑥 + 𝑦 + 𝑇𝑦 

 

Remember that in the absence of the 

disease𝑑1𝑇𝑦, 𝑘𝑦
𝑎4𝐼

𝜇
, 𝜙𝑦, 𝑏4𝑦𝑎𝑛𝑑𝑎6𝑦 will be equal to 

zero. Then we obtain 

AL(t) = 𝜓 − 𝑎1𝑥 − 𝑎1𝑦 − 𝑎1𝑇𝑦 + 𝑏(1 − AL) 

AL(t) = 𝜓 − 𝑎1(𝑥 + 𝑦 + 𝑇𝑦) + 𝑏(1 − AL) 

AL(t) = 𝜓 − 𝑎1AL + 𝑏 − 𝑏AL 

AL(t) + (𝑎1 + 𝑏)AL

≤ 𝜓
+ 𝑏                                                      (3.8) 

 

We shall integrate both sides of equation (3.8) using 

integrating factor method according to (Kar and Jana, 

2013; Birkhoff and Roffa, 1989) to obtain: 

𝐴𝐿
′ + 𝑃(𝑡)𝑑𝑡 = 𝐹(𝑡) 

𝐴𝐿 ≤ 𝑒−∫𝑃(𝑡)𝑑𝑡 (∫𝑒∫ 𝑃(𝑡)𝑑𝑡𝐹(𝑡)𝑑𝑡 + 𝐶) 

 

where 𝑃(𝑡) = 𝑎1 + 𝑏  𝑎𝑛𝑑  𝐹(𝑡) = 𝜓 + 𝑏. Let the 

integrating factor be  

𝑟(𝑡) = 𝑒∫𝑃(𝑡)𝑑𝑡 = 𝑒∫(𝑎1+𝑏)𝑑𝑡 = 𝑒(𝑎1+𝑏)𝑡 

 

Then integrating equation (3.8) by inputting 𝑟(𝑡) =

𝑒(𝑎1+𝑏)𝑡 gives 

𝐴𝐿(𝑡) ≤
1

𝑟(𝑡)
(∫ 𝑟(𝑡). 𝐹(𝑡)𝑑𝑡 + 𝐶) 

⟹ 𝐴𝐿(𝑡) ≤
1

𝑒(𝑎1+𝑏)𝑡
(∫𝑒(𝑎1+𝑏)𝑡. (𝜓 + 𝑏)𝑑𝑡 + 𝐶) 

𝐴𝐿(𝑡) ≤
1

𝑒(𝑎1+𝑏)𝑡
((𝜓 + 𝑏)∫𝑒(𝑎1+𝑏)𝑡𝑑𝑡 + 𝐶) 

𝐴𝐿(𝑡) ≤
1

𝑒(𝑎1+𝑏)𝑡
(

(𝜓 + 𝑏)

(𝑎1 + 𝑏)
𝑒(𝑎1+𝑏)𝑡 + 𝐶) 
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𝐴𝐿(𝑡)

≤
(𝜓 + 𝑏)

(𝑎1 + 𝑏)

+ 𝐶𝑒−(𝑎1+𝑏)𝑡                                                        (3.9) 

 

Here, C is the constant of integration and if we let 𝑡 →
∞we have that 

𝐴𝐿(𝑡) =
(𝜓 + 𝑏)

(𝑎1 + 𝑏)
= 𝑥 + 𝑦 + 𝑇𝑦 

But  

𝑥 ≤
𝜓

𝑎1
                                                                      (3.10) 

Also, 

Ar(t)
= B(t) + I(t) + TI(t)                                               (3.11) 

Ar(t) = 𝛾 − 𝛼𝐵
𝑎4𝐼

𝜇
− 𝑎2𝐵 + 𝑏1(1 − 𝐵 − 𝐼 − 𝑇𝐼)  

+ 𝛼𝐵
𝑎4𝐼

𝜇
 

+𝜃𝐼 − 𝑑2𝐼 − 𝑎2𝐼 − 𝑎5𝐼 − 𝑏3𝐼 + 𝑑2𝐼 − 𝑑3𝑇𝐼 − 𝑎2𝑇I 

 

where  

𝐴𝑟 = 𝐵 + 𝐼 + 𝑇𝐼 

 

Also, in the absence of the disease, 

𝜃𝐼, 𝑎5𝐼, 𝑏3𝐼𝑎𝑛𝑑𝑑3𝑇𝐼 will be zero. Then we have 

Ar(t) = 𝛾 − 𝑎2𝐵 − 𝑎2𝐼 − 𝑎2𝑇𝐼 + 𝑏1(1 − Ar) 

Ar(t) = 𝛾 − 𝑎2(𝐵 + 𝐼 + 𝑇𝐼) + 𝑏1(1 − Ar) 

Ar(t) = 𝛾 − 𝑎2AL + 𝑏1 − 𝑏1AL 

Ar(t) + (𝑎2 + 𝑏1)Ar

≤ 𝛾 + 𝑏1                                                      (3.12) 

 

Using integrating factor method on equation (3.12), 

we have 

𝐴𝑟(𝑡)

≤
(𝛾 + 𝑏1)

(𝑎2 + 𝑏1)

+ 𝐶1𝑒
−(𝑎2+𝑏1)𝑡                                                        (3.13) 

 

Here, C 

is the constant of integration and if we let 𝑡 → ∞we 

have that 

𝐴𝑟(𝑡) =
(𝛾 + 𝑏1)

(𝑎1 + 𝑏1)
= 𝐵 + 𝐼 + 𝑇𝐼 

But  

𝐵 ≤
𝛾

𝑎2
                                                                      (3.14) 

Observe from the dynamics describe by the systems 

(3.2), (3.10) and (3.14) that the region 

Γ = {(𝑥, y, Ty, B, I, TI) ∈ ℝ+
6 : N ≤

ψ

a1
: N1 ≤

γ

a2
} 

is positively invariant and the systems for the liver 

cells and red blood cells are respectively well-posed 

epidemically and mathematically. Then for the initial 

starting point 𝐴𝐿 ∈ ℝ+
3  and𝐴𝑟 ∈ ℝ+

3  the trajectory lies 

on Γ. Thus, we focus our attention only on the region 

Γ.  

 

3.6. Disease Free Equilibrium point 

To study the equilibrium state and analyze the 

stability of the system, we set the right side of 

equation (3.3) to zero. Thus, we have 

𝜓 − 𝑎1𝑥 − 𝛽𝑥
𝑎3𝑦

𝜇
+ 𝑏𝑅 = 0  

𝛽𝑥
𝑎3𝑦

𝜇
+ 𝜙𝑦 − 𝜁𝑦 − 𝑎1𝑦 − 𝑎6𝑦 − 𝑘𝑦

𝑎4𝐼

𝜇
− 𝑏4𝑦

= 0  
𝜁𝑦 − 𝑎1𝑇𝑦 − 𝑑1𝑇𝑦 = 0  

𝑑1𝑇𝑦 − 𝑎1𝑅 − 𝑏𝑅 + 𝑏4𝑦

= 0                                                               (3.15) 

𝛾 − 𝛼𝐵
𝑎4𝐼

𝜇
− 𝑎2𝐵 + 𝑏1𝑅1 = 0  

𝛼𝐵
𝑎4𝐼

𝜇
+ 𝜃𝐼 − 𝑑2𝐼 − 𝑎2𝐼 − 𝑎5𝐼 − 𝑏3𝐼 = 0  

𝑑2𝐼 − 𝑑3𝑇𝐼 − 𝑎2𝑇I = 0  
𝑑3𝑇𝐼 − 𝑎2𝑅1 − 𝑏1𝑅1 + 𝑏3𝐼 = 0 

 

If we label equation (3.15) as (3.15i) to (3.15viii), 

then (3.15ii) gives 

𝛽𝑥
𝑎3𝑦

𝜇
+ 𝜙𝑦 − 𝜁𝑦 − 𝑎1𝑦 − 𝑎6𝑦 − 𝑘𝑦

𝑎4𝐼

𝜇
− 𝑏4𝑦 = 0 

(𝛽𝑥
𝑎3

𝜇
+ 𝜙 − 𝜁 − 𝑎1 − 𝑎6 − 𝑘

𝑎4𝐼

𝜇
− 𝑏4) 𝑦 = 0 

⟹ 𝑦 = 0 

From (3.15iii) we have 

𝜁𝑦 − 𝑎1𝑇𝑦 − 𝑑1𝑇𝑦 = 0 

But 𝑦 = 0, then we have 

(𝑎1 + 𝑑1)𝑇𝑦 = 0  ⟹ 𝑇𝑦 = 0 

From (3.15iv) we obtain 

𝑑1𝑇𝑦 − 𝑎1𝑅 − 𝑏𝑅 + 𝑏4𝑅 = 0 

Since 𝑇𝑦 = 𝑦 = 0, we have 

(𝑎1 + 𝑏)𝑅 = 0  ⟹ 𝑅 = 0 

From (3.15i) we have 

𝜓 − 𝑎1𝑥 − 𝛽𝑥
𝑎3𝑦

𝜇
+ 𝑏𝑅 = 0  

But 𝑦 𝑎𝑛𝑑 𝑅 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜, then we have 

𝜓 − 𝑎1𝑥 = 0 ⟹ 𝑥 =
𝜓

𝑎1
 

From (3.15i) we get 

𝛼𝐵
𝑎4𝐼

𝜇
+ 𝜃𝐼 − 𝑑2𝐼 − 𝑎2𝐼 − 𝑎5𝐼 − 𝑏3𝐼 = 0  
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(𝛼𝐵
𝑎4

𝜇
+ 𝜃 − 𝑑2 − 𝑎2 − 𝑎5 − 𝑏3) 𝐼 = 0  

⟹ 𝐼 = 0 

From (3.15vii) we have 

𝑑2𝐼 − 𝑑3𝑇𝐼 − 𝑎2𝑇I = 0  
But 𝐼 = 0, then 

(𝑑3 + 𝑎2)𝑇I = 0 ⟹ 𝑇I = 0  
Substituting 𝑇I = 𝐼 = 0 in(3.15viii) we obtain 

(𝑎2 + 𝑏1)𝑅1 = 0 ⟹ 𝑅1 = 0 

Also, if we substitute 𝐼 = 𝑅1 = 0  into (3.15v) we get 

𝛾 − 𝑎2𝐵 = 0 ⟹ 𝐵 =
𝛾

𝑎2
 

There, the disease free equilibrium point of the model 

is given as  

Φ = (𝑥, 𝑦, 𝑇𝑦, 𝑅, 𝐵, 𝐼, 𝑇𝐼 , 𝑅1)

= (
𝜓

𝑎1
, 0, 0, 0,

𝛾

𝑎2
, 0, 0, 0)                           (3.16) 

 

3.7. Existence and stability analysis of disease free equilibrium 

To find the Jacobian matrix of the model system, we differentiate equation (3.3) with respect to 

𝑥, 𝑦, 𝑇𝑦, 𝑅, 𝐵, 𝐼, 𝑇𝐼 , 𝑅1 respectively to obtain. 

𝑑𝑥∗

𝑑𝑡
= [𝑎1 − 𝛽

𝑎3𝑦

𝜇
] 𝑥∗ + [−𝛽𝑥

𝑎3

𝜇
] 𝑦∗ + [𝑏]𝑅∗ 

𝑑𝑦∗

𝑑𝑡
= [𝛽

𝑎3𝑦

𝜇
] 𝑥∗ + [𝛽𝑥

𝑎3

𝜇
+ 𝜙 − 𝜁 − 𝑎1 − 𝑘

𝑎4𝐼

𝜇
− 𝑎6 − 𝑏4] 𝑦∗ + [−𝑘

𝑎4𝐼

𝜇
] 𝐼∗ 

𝑑𝑇𝑦
∗

𝑑𝑡
= [𝜁]𝑦∗ + [−(𝑎1 + 𝑑)]𝑇𝑦

∗ 

𝑑𝑅∗

𝑑𝑡
= [𝑏4]𝑦

∗ + [𝑑1]𝑇𝑦
∗ + [−(𝑎1 + 𝑏)]𝑅∗ 

𝑑𝐵∗

𝑑𝑡
= [−𝛼

𝑎4𝐼

𝜇
− 𝑎2] 𝐵∗ + [−𝛼

𝑎4𝐵

𝜇
] 𝐼∗ + [𝑏1]𝑅1

∗ 

𝑑𝐼∗

𝑑𝑡
= [𝛼

𝑎4𝐼

𝜇
]𝐵∗ + [𝛼

𝑎4𝐵

𝜇
+ 𝜃 − 𝑑2 − 𝑎2 − 𝑎5 − 𝑏3] 𝐼∗ 

𝑑𝑇𝐼
∗

𝑑𝑡
= [𝑑2]𝐼

∗ + [−(𝑑3 + 𝑎2)]𝑇𝐼
∗ 

𝑑𝑅1
∗

𝑑𝑡
= [𝑑3]𝑇𝐼

∗ + [𝑏3]𝐼
∗ + [−(𝑎2 + 𝑏1)]𝑅1

∗ 

 

We examine the stability of the disease free equilibrium using equation (3.16) 
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We need to show that all the eigen values of the matrix J(Q) have negative real part. Observe that the first and 

fifth columns contain only the diagonal terms and this forms the two negative eigen values 𝜆1 = −𝑎1 𝑎𝑛𝑑 𝜆2 =
 −𝑎2, the other six eiginevalues can be obtained from the sub-matrix, 𝐽2(𝑄), formed by excluding the first and 

fifth rows and columns of J(Q). thus, we have    

 

In the same way, the third and sixth column of 𝐽1(𝑄) contains only the diagonal term 

which forms negative eigenvalues𝜆3 = −(𝑎1 + 𝑏 − 𝑏4) 𝑎𝑛𝑑 𝜆4 = −(𝑎2 + 𝑏1). The 

remaining four eigenvalues are obtained from the sub - matrix 
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The eigenvalues of the matrix 𝐽2(𝑄) are the roots of the characteristic equation 

 

(−𝜆 +
𝛽𝜓𝑎3

𝜇𝑎1
+ 𝜙 − 𝜁 − 𝑎1 − 𝑎6 − 𝑏4) (−𝜆 − 𝑎1 − 𝑑1) (−𝜆 +

𝛼𝛾𝑎4

𝜇𝑎2
+ 𝜃 − 𝑑2 − 𝑎2 − 𝑎5 − 𝑏3) (−𝜆 − 𝑑3

− 𝑎2) = 0 

which translates to 

 

𝜆5 = −𝑎1 − 𝑑1, 𝜆6 = −𝑑3 − 𝑎2, 𝜆7 =
𝛽𝜓𝑎3

𝜇𝑎1
+ 𝜙 − 𝜁 − 𝑎1 − 𝑎6 − 𝑏4, 

 𝑎𝑛𝑑 𝜆8 =
𝛼𝛾𝑎4

𝜇𝑎2
+ 𝜃 − 𝑑2 − 𝑎2 − 𝑎5 − 𝑏3 

 

This implies that the eigenvalues 𝜆1,2,…,6 are both less that zero i.e., 𝜆1 < 0, 𝜆2 < 0, … , 𝜆6 < 0.If 
𝛽𝜓𝑎3

𝜇𝑎1
+ 𝜙 <

𝜁 + 𝑎1 + 𝑎6 𝑎𝑛𝑑  
𝛼𝛾𝑎4

𝜇𝑎2
+ 𝜃 < 𝑑2 + 𝑎2 + 𝑎5 + 𝑏3, clearly, 𝜆7 𝑎𝑛𝑑 𝜆8 will respectively be less than zero 

(𝜆7 < 0 𝑎𝑛𝑑 𝜆8 < 0) and that means that the steady state is asymptotically stable. But if  
𝛽𝜓𝑎3

𝜇𝑎1
+ 𝜙 > 𝜁 + 𝑎1 +

𝑎6 𝑎𝑛𝑑  
𝛼𝛾𝑎4

𝜇𝑎2
+ 𝜃 > 𝑑2 + 𝑎2 + 𝑎5 + 𝑏3, 𝜆7 𝑎𝑛𝑑 𝜆8 will respectively be greater than zero (𝜆7 > 0 𝑎𝑛𝑑 𝜆8 > 0), 

we conclude that the steady state is unstable. 

 

3.8. Basic Reproduction Number 𝑹𝟎 

The basic reproduction number 𝑅0 is the average number of secondary infectious infected by an infective 

individuals during the whole cause of disease in the case that all members of the population are susceptible 

(Zhien et al, 2009; Olaniyi and Obabiyi, 2013). 

 

To obtain 𝑅0 for model equation (3) we use the next generation technique (Van den Driessche and Watmough, 

2002; Diekmann et al, 1990). We shall start with those equations of the model that describes the production of 

new infections and change in state among infected liver cells and red blood cells. 

Let 𝐻 = [𝑥, 𝑦, 𝑇𝑦, 𝐵, 𝐼, 𝑇𝐼]
𝑇
 where T denotes transpose. 

 
𝑑𝐻

𝑑𝑡
= 𝐹(𝐻) − 𝑉(𝐻)                                                              (3.17) 

𝐹(𝐻) =

[
 
 
 
 
 
𝛽𝜓𝑎3𝑦

𝜇𝑎1
+ 𝜙𝑦

0
𝛼𝛾𝑎4𝐼

𝜇𝑎2
+ 𝜃𝐼

0 ]
 
 
 
 
 

, 𝑉(𝐻) =

[
 
 
 
 
 𝜁𝑦 + 𝑎1𝑦 +

𝑘𝑦𝑎4𝐼

𝜇
+ 𝑎6𝑦 + 𝑏4𝑦

−𝜁𝑦 + 𝑎1𝑇𝑦 + 𝑑1𝑇𝑦

𝑑2𝐼 + 𝑎2𝐼 + 𝑎5𝐼 + 𝑏3𝐼
−𝑑2𝐼 + 𝑑3𝑇𝐼 + 𝑎2𝑇𝐼 ]

 
 
 
 
 

 

 

Finding the derivatives of  𝐹 𝑎𝑛𝑑 𝑉 at the disease free equilibrium point Φ gives 𝐹 𝑎𝑛𝑑 𝑉 respectively as 
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|𝐹. 𝑉−1| = 0 

 

 

 

 

 

 

 

Here, we can obtain the basic reproduction number 𝑅0 from the trce and determinant of the matrix 𝐹𝑉−1 = 𝐺. 

𝑅0 = 𝑊(𝐺) =
1

2
𝑡𝑟𝑎𝑐𝑒(𝐺) + √𝑡𝑟𝑎𝑐𝑒(𝐺)2 − 4det(𝐺)                                (3.18) 

 

Observe that det(𝐺) = 0, so we have  

 

𝑅0 =
𝛽𝜓𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)
+

𝜙

𝜁 + 𝑎1 + 𝑎6 + 𝑏4
+

𝛾𝛼𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
+

𝜃

𝑎2 + 𝑎5 + 𝑏3 + 𝑑2
       (3.19) 

 

From equation (3.19), 
𝛽𝜓𝑎3

𝑎1𝜇
+ 𝜙 is the multiplication ability of the disease in the liver cells and the probability 

that an individual will move to the second level which is the infection of the red blood cells; 
1

𝜁+𝑎1+𝑎6+𝑏4
 is the 

average duration of infectious period of the liver cells before the release of the parasite to invade red blood 

cells;  
𝛾𝛼𝑎4

𝑎2𝜇
+ 𝜃 is the multiplication ability of the disease in the red blood cells and the probability that the 

individual will be infectious; 
1

𝑎2+𝑎5+𝑏3+𝑑2
 is the average duration of the infectious period of the red blood cells. 

Let the basic reproduction number 𝑅0 be written as 

 

𝑅0 = 𝑅𝐿 + 𝑅𝑟                                                                  (3.20) 

where 

𝑅𝐿 =
𝛽𝜓𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)
+

𝜙

𝜁 + 𝑎1 + 𝑎6 + 𝑏4
 

𝑎𝑛𝑑     𝑅𝑟 =
𝛾𝛼𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
+

𝜃

𝑎2 + 𝑎5 + 𝑏3 + 𝑑2
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We have 𝑅𝐿 describing the number of liver cells that one infectious liver cell infects over its expected infectious 

period in a completely susceptible liver cell population. While 𝑅𝑟 describes the number of red blood cells 

infected by one infectious red blood cell during the period of infectiousness in a completely susceptible red 

blood cell population. 

 

3.9. Existence of Endemic Equilibrium point 

Endemic equilibrium point describes the point at which the disease cannot totally be eradicated from the 

population. We shall show that the formulated model system (3.3) has an endemic point and we let Φ∗∗ be the 

endemic equilibrium point. 

 

Theorem 2: the intracellular malaria model system (3.3) has no endemic equilibrium when 𝑅0 < 1 but has a 

unique endemic equilibrium when  𝑅0 > 1. 
 

Proof: Let Φ∗∗ = (𝑥∗∗, 𝑦∗∗, 𝑇𝑦
∗∗, 𝑅∗∗, 𝐵∗∗, 𝐼∗∗, 𝑇𝐼

∗∗, 𝑅1
∗∗) be a nontrivial equilibrium of the model system (3.3); 

i.e., all components of  Φ∗∗ are positive. If we solve equation (3.3) simultaneously having in mind that Φ∗∗ ≠ 0 

we have that 

𝑑1𝑇𝑦
∗∗ − 𝑎1𝑅

∗∗ − 𝑏𝑅∗∗ + 𝑏4𝑦
∗∗ = 0 

⟹ 𝑅∗∗ =
𝑑1𝑇𝑦

∗∗ + 𝑏4𝑦
∗∗

𝑎1 + 𝑏
                                                               (3.21) 

𝜁𝑦∗∗ − 𝑎1𝑇𝑦
∗∗ − 𝑑1𝑇𝑦

∗∗ = 0 

𝑇𝑦
∗∗ =

𝜁𝑦∗∗

𝑎1 + 𝑑1
                                                                              (3.22) 

Therefore (3.21) can be rewritten as  

𝑅∗∗ =
1

𝑎1 + 𝑏
(
𝑑1𝜁𝑦

∗∗

𝑎1 + 𝑑1
+ 𝑏4𝑦

∗∗)                                             (3.23) 

𝑑2𝐼
∗∗ − 𝑎2𝑇𝐼

∗∗ − 𝑑3𝑇𝐼
∗∗ = 0 

𝑇𝐼
∗∗ =

𝑑2𝐼
∗∗

𝑎2 + 𝑑3
                                                                             (3.24) 

𝑑2𝑑3𝐼
∗∗

𝑎2 + 𝑑3
+ 𝑏3𝐼

∗∗ = (𝑎2 + 𝑏1)𝑅1
∗∗ 

𝑅1
∗∗ =

[𝑑2𝑑3 + 𝑏3(𝑎2 + 𝑑3)]𝐼
∗∗

(𝑎2 + 𝑏1)(𝑎2 + 𝑑3)
                                    (3.25) 

𝛼𝐵∗∗
𝑎4𝐼

∗∗

𝜇
+ 𝜃𝐼∗∗ − 𝑑2𝐼

∗∗ − 𝑎2𝐼
∗∗ − 𝑎5𝐼

∗∗ − 𝑏3𝐼
∗∗ = 0 

𝛼𝐵∗∗
𝑎4

𝜇
+ 𝜃 − 𝑑2 − 𝑎2 − 𝑎5 − 𝑏3 = 0 

𝐵∗∗ =
(𝑑2 + 𝑎2 + 𝑎5 + 𝑏3 − 𝜃)𝜇

𝛼𝑎4
                                       (3.26) 

𝛾 − 𝛼 (
(𝑑2 + 𝑎2 + 𝑎5 + 𝑏3 − 𝜃)𝜇

𝛼𝑎4
)

𝑎4𝐼
∗∗

𝜇
− 𝑎2 (

(𝑑2 + 𝑎2 + 𝑎5 + 𝑏3 − 𝜃)𝜇

𝛼𝑎4
) 

+𝑏1

[𝑑2𝑑3 + 𝑏3(𝑎2 + 𝑑3)]𝐼
∗∗

(𝑎2 + 𝑏1)(𝑎2 + 𝑑3)
= 0 

 

𝑏1[𝑑2𝑑3 + 𝑏3(𝑎2 + 𝑑3)]𝐼
∗∗ − (𝑑2 + 𝑎2 + 𝑎5 + 𝑏3 − 𝜃)(𝑎2 + 𝑏1)(𝑎2 + 𝑑3)𝐼

∗∗

= [𝑎2 (
(𝑑2 + 𝑎2 + 𝑎5 + 𝑏3 − 𝜃)𝜇

𝛼𝑎4
) − 𝛾] (𝑎2 + 𝑏1)(𝑎2 + 𝑑3) 
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𝐼∗∗ =
[𝑎2 (

(𝑑2 + 𝑎2 + 𝑎5 + 𝑏3 − 𝜃)𝜇
𝛼𝑎4

) − 𝛾] (𝑎2 + 𝑏1)(𝑎2 + 𝑑3)

𝑏1[𝑑2𝑑3 + 𝑏3(𝑎2 + 𝑑3)] − (𝑑2 + 𝑎2 + 𝑎5 + 𝑏3 − 𝜃)(𝑎2 + 𝑏1)(𝑎2 + 𝑑3)
          (3.27) 

 

 

𝛽𝑥
𝑎3𝑦

∗∗

𝜇
+ 𝜙𝑦∗∗ − 𝜁𝑦∗∗ − 𝑎1𝑦

∗∗ − 𝑎6𝑦
∗∗ − 𝑘𝑦

𝑎4𝐼
∗∗

𝜇
− 𝑏4𝑦

∗∗ = 0 

 

𝛽𝑥∗∗
𝑎3

𝜇
+ 𝜙 − 𝜁 − 𝑎1 − 𝑎6 − 𝑘𝑦

𝑎4𝐼
∗∗

𝜇
− 𝑏4 = 0 

 

𝑥∗∗ = (𝜁 + 𝑎1 + 𝑎6 + 𝑘𝑦

𝑎4𝐼
∗∗

𝜇
+ 𝑏4 − 𝜙)

𝜇

𝛽𝑎3
                                                                     (3.28) 

 

𝜓 − 𝑎1𝑥
∗∗ − 𝛽𝑥∗∗

𝑎3𝑦
∗∗

𝜇
+ 𝑏𝑅∗∗   = 0 

𝜓 − 𝑎1 (𝜁 + 𝑎1 + 𝑎6 + 𝑘𝑦

𝑎4𝐼
∗∗

𝜇
+ 𝑏4 − 𝜙)

𝜇

𝛽𝑎3
− 𝛽 (𝜁 + 𝑎1 + 𝑎6 + 𝑘𝑦

𝑎4𝐼
∗∗

𝜇
+ 𝑏4 − 𝜙)

𝜇

𝛽𝑎3

𝑎3𝑦
∗∗

𝜇

+
𝑏

𝑎1 + 𝑏
(
𝑑1𝜁𝑦

∗∗

𝑎1 + 𝑑1
+ 𝑏4) = 0 

 

𝛽 (𝜁 + 𝑎1 + 𝑎6 + 𝑘𝑦

𝑎4𝐼
∗∗

𝜇
+ 𝑏4 − 𝜙)

𝜇

𝛽𝑎3

𝑎3𝑦
∗∗

𝜇
−

𝑏

𝑎1 + 𝑏
(

𝑑1𝜁

𝑎1 + 𝑑1
+ 𝑏4) 𝑦∗∗

= [𝜓 − 𝑎1 (𝜁 + 𝑎1 + 𝑎6 + 𝑘𝑦

𝑎4𝐼
∗∗

𝜇
+ 𝑏4 − 𝜙)

𝜇

𝛽𝑎3
] 

 

𝑦∗∗ =
[𝜓 − 𝑎1 (𝜁 + 𝑎1 + 𝑎6 + 𝑘𝑦

𝑎4𝐼
∗∗

𝜇 + 𝑏4 − 𝜙)
𝜇

𝛽𝑎3
]

(𝜁 + 𝑎1 + 𝑎6 + 𝑘𝑦
𝑎4𝐼∗∗

𝜇 + 𝑏4 − 𝜙) −
𝑏

𝑎1 + 𝑏
(

𝑑1𝜁
𝑎1 + 𝑑1

+ 𝑏4)
                                (3.29) 

 

3.10. Sensitivity Analysis of the Basic Reproduction Number 𝑹𝟎 

Observe that the basic reproduction number 𝑅0 is in the form 𝑅0 = 𝑅𝐿 + 𝑅𝑟, where 𝑅𝐿 and𝑅𝑟 are functions of 

nine parameters respectively. But 𝑅0 is a function of sixteen parameters which comprises of the basic 

reproduction number at the liver site and the basic reproduction number at the blood site. To control the 

disease, these parameter values must control 𝑅0, such that its value will be less than one (𝑅0 < 1). Therefore 

change in the parameter values, results in change in 𝑅0 and if we let 

 

𝑞𝐿 = (𝛽,𝜓, 𝑎1, 𝑎3, 𝑎6, 𝜇, 𝜁, 𝜙) 𝑎𝑛𝑑 𝑞𝑟 = (𝛾, 𝛼, 𝑎2, 𝑎4, 𝑎5, 𝜇, 𝑏3, 𝑑2, 𝜃) 

 

then the rate of change of 𝑅0 for a change in the value of parameter 𝑞 can be estimated from a normalized 

sensitivity index 

 

Z𝑞
𝑅0 =

𝜕𝑅𝐿

𝜕𝑞𝐿
.
𝑅𝐿

𝑞𝐿
 +  

𝜕𝑅𝑟

𝜕𝑞𝑟
.
𝑅𝑟

𝑞𝑟
                                     (3.30) 

 

Z𝑞𝐿

𝑅𝐿 =
𝜕𝑅𝐿

𝜕𝑞𝐿
.
𝑅𝐿

𝑞𝐿
 𝑎𝑛𝑑 Z𝑞𝑟

𝑅𝑟 =
𝜕𝑅𝑟

𝜕𝑞𝑟
.
𝑅𝑟

𝑞𝑟
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Table 1 Parameter values for calculating 𝑹𝟎 and Numerical Simulation of the Model 

Parameters Description 
Value 

Range 
Reference 

𝜓 Recruitment levelof uninfected hepatocytes 3 × 108 Mota et al, 2001 

𝑎1 
Natural death rate of both uninfected, infected, 

treated and recovered hepatocytes 

0.002-

0.0067 
Mota et al, 2001 

𝛽 Rate at which hepatocytes are infected 4 × 10−9 Tabo et al, 2017 

𝜇 Natural death rate of malaria parasite 48 Tabo et al, 2017 

𝑎3 
Rate at which infected hepatocytes produce free 

sporozoites 
0.181 Esteva et al, 2009 

𝑏 
Rate at which recovered hepatocytes move to 

susceptible class 

1.3
× 10−4 

Chitnis, 2008; Mohammed and 

Orukpe, 2014 

𝜁 Treatment rate of infectious hepatocytes 0.95 
Mohammed and Orukpe, 2014; 

Castillo-Riquelme et al, 2008. 

𝑑1 
Movement rate of treated infectious hepatocytes 

to recovered class 
0.1 Ducrot et al, 2008 

𝑎2 
Natural death rate of erythrocytes (Red blood 

cells) 
0.0083 Anderson et al, 1989 

𝛾 Recruitment level of erythrocytes 2.5 × 108 Austin et al, 1998 

𝛼 
Rate at which uninfected erythrocytes are being 

infected 
2 × 1010 Dondorp et al, 2000 

𝑎4 
Rate at which infected erythrocytes produce free 

merozoites 
16 Chiyaka et al, 2010 

𝑎5 
Disease induced death rate of infected 

erythrocytes 
0.24 Chiyaka et al, 2010 

𝑎6 
Disease induced death rate of infected 

hepatocytes 
2.0 Tabo et al, 2017 

𝜙 
The rate at which infected hepatocytes 

proliferate 
3 × 10−5 Estimated 

𝜃 
The rate at which infected erythrocytes 

proliferate 

2.5
× 10−5 

Estimated 

𝑑2 
Rate at which infectederythrocytesare being 

treated 
0.95 Mohammed and Orukpe, 2014 

𝑑3 
Movement rate of treated infected erythrocytes 

to recovered class 
0.01 Ducrot et al, 2008 

𝑘𝑦 
Rate at which infected hepatocytes  produce 

merozoites (malaria parasite) 
16 

Tabo et al, 2017; Chiyaka et al, 

2010 

𝑏3 Recovered erythrocytes due to immune response 4.56 Estimated 

𝑏4 Recovered hepatocytes due to immune response 0.0035 Shah and Gupta, 2013 

𝑏1 
Movement rate of recovered erythrocytes to 

susceptible class class 

1.37
× 10−4 

Chitnis, 2008; Molineaux and 

Gramiccia, 1980 

 

To calculate the value of 𝑅0, we use the parameters as stated in table 1. 

𝑅0 = 𝑅𝐿 + 𝑅𝑟 

𝑅𝐿 =
𝛽𝜓𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)
+

𝜙

𝜁 + 𝑎1 + 𝑎6 + 𝑏4
 

 

𝑅𝑟 =
𝛾𝛼𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
+

𝜃

𝑎2 + 𝑎5 + 𝑏3 + 𝑑2
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𝑅𝐿 =
4 × 10−9 × 3 × 108 × 0.181

0.004 × 48(0.95 + 0.004 + 2 + 0.0035)
+

3 × 10−5

0.95 + 0.004 + 2 + 0.0035
 

= 0.382512257 

 

𝑅𝑟 =
2.5 × 108 × 2 × 10−10 × 16

0.0083 × 48(0.0083 + 0.24 + 4.56 + 0.95)
+

2.5 × 10−5

0.0083 + 0.24 + 4.56 + 0.95
 

= 0.348723952 

 

𝑅0 = 0.382512257 + 0.348723952 = 0.731236209 

 

The normalized sensitivity index of the basic reproduction number with respect to 𝛽,𝜓, 𝑎1, 𝑎3, 
𝑎6, 𝜇, 𝜁, 𝜙 is given by 

Z𝑞𝐿

𝑅𝐿 =
𝜕𝑅𝐿

𝜕𝑞𝐿
.
𝑅𝐿

𝑞𝐿
 

Z𝛽
𝑅𝐿 =

𝜕𝑅𝐿

𝜕𝛽
.
𝑅𝐿

𝛽
= (

𝜓𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)
) (

𝑅𝐿

𝛽
) = 9.0110964 × 1015 

 

Z𝜓
𝑅𝐿 =

𝜕𝑅𝐿

𝜕𝜓
.
𝑅𝐿

𝜓
= (

𝛽𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)
) (

𝑅𝐿

𝜓
) = 1.69 × 10−18 

 

Z𝑎3

𝑅𝐿 =
𝜕𝑅𝐿

𝜕𝑎3
.
𝑅𝐿

𝑎3
= (

𝛽𝜓

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)
) (

𝑅𝐿

𝑎3
) = 4.4018101352 

 

Z𝜙
𝑅𝐿 =

𝜕𝑅𝐿

𝜕𝜙
.
𝑅𝐿

𝜙
= (

1

𝜁 + 𝑎1 + 𝑎6 + 𝑏4
) (

𝑅𝐿

𝜙
) = 4311.2116885 

Z𝑎1

𝑅𝐿 =
𝜕𝑅𝐿

𝜕𝑎1
.
𝑅𝐿

𝑎1
= −(

𝛽𝜓𝑎3(𝜁 + 2𝑎1 + 𝑎6 + 𝑏4)

(𝑎1𝜇𝜁 + 𝑎1
2𝜇 + 𝑎1𝜇𝑎6 + 𝑎1𝜇𝑏4)2

+
𝜙

(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)2
)(

𝑅𝐿

𝑎1
) 

= −9156.8606658  

Z𝜇
𝑅𝐿 =

𝜕𝑅𝐿

𝜕𝜇
.
𝑅𝐿

𝜇
= −(

𝛽𝜓𝑎3

𝑎1𝜇2(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)
) (

𝑅𝐿

𝜇
) = −0.0488762883 

Z𝜁
𝑅𝐿 =

𝜕𝑅𝐿

𝜕𝜁
.
𝑅𝐿

𝜁
= −(

𝛽𝜓𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)2
+

𝜙

(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)2
) (

𝑅𝐿

𝜁
) 

= −0.0521115791 

Z𝑏4

𝑅𝐿 =
𝜕𝑅𝐿

𝜕𝑏4
.
𝑅𝐿

𝑏4
= −(

𝛽𝜓𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)2
+

𝜙

(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)2
) (

𝑅𝐿

𝑏4
) 

= −14.144571463 

Z𝑎6

𝑅𝐿 =
𝜕𝑅𝐿

𝜕𝑎6
.
𝑅𝐿

𝑎6
= −(

𝛽𝜓𝑎3

𝑎1𝜇(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)2
+

𝜙

(𝜁 + 𝑎1 + 𝑎6 + 𝑏4)2
) (

𝑅𝐿

𝑎6
) 

= −0.0247530001 
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The normalized sensitivity index of the basic reproduction number with respect to 𝛾, 𝛼, 𝑎2, 𝑎4, 𝑎5, 𝜇, 𝑏3, 𝑑2, 𝜃is 

given by      Z𝑞𝐿
𝑅 =

𝜕𝑅𝑟

𝜕𝑞𝑟
.
𝑅𝑟

𝑞𝑟
 

Z𝛾
𝑅𝑟 =

𝜕𝑅𝑟

𝜕𝛾
.
𝑅𝑟

𝛾
= (

𝛼𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
) (

𝑅𝑟

𝛾
) = 1.96 × 10−18 

Z𝛼
𝑅𝑟 =

𝜕𝑅𝑟

𝜕𝛼
.
𝑅𝑟

𝛼
= (

𝛾𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
) (

𝑅𝑟

𝛼
) = 3.0401721 × 1018 

Z𝑎4

𝑅𝑟 =
𝜕𝑅𝑟

𝜕𝑎4
.
𝑅𝑟

𝑎4
= (

𝛾𝛼

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
) (

𝑅𝑟

𝑎4
) = 0.0004750269 

Z𝜃
𝑅𝑟 =

𝜕𝑅𝑟

𝜕𝜃
.
𝑅𝑟

𝜃
= (

1

(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
) (

𝑅𝑟

𝜃
) = 2422.4090582 

Z𝑎2

𝑅𝐿 =
𝜕𝑅𝑟

𝜕𝑎2
.
𝑅𝑟

𝑎2
= −(

𝛾𝛼𝑎4(2𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)

(𝑎2
2𝜇 + 𝑎2𝑎5𝜇 + 𝑎2𝑏3𝜇 + 𝑎2𝑑2𝜇)2

+
𝜃

(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)2
)(

𝑅𝑟

𝑎2
) 

= −1761.6460452  

Z𝜇
𝑅𝑟 =

𝜕𝑅𝑟

𝜕𝜇
.
𝑅𝑟

𝜇
= −(

𝛾𝛼𝑎4

𝑎2𝜇2(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)
) (

𝑅𝑟

𝜇
) = −0.0000527808 

Z𝑎5

𝑅𝑟 =
𝜕𝑅𝑟

𝜕𝑎5
.
𝑅𝑟

𝑎5
= −(

𝛾𝛼𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)2
+

𝜃

(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)2
) (

𝑅𝑟

𝑎5
) 

= −0.0879950061 

Z𝑏3

𝑅𝑟 =
𝜕𝑅𝑟

𝜕𝑏3
.
𝑅𝑟

𝑏3
= −(

𝛾𝛼𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)2
+

𝜃

(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)2
) (

𝑅𝑟

𝑏3
) 

= −0.0046313161 

Z𝑎5

𝑅𝑟 =
𝜕𝑅𝑟

𝜕𝑑2
.
𝑅𝑟

𝑑2
= −(

𝛾𝛼𝑎4

𝑎2𝜇(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)2
+

𝜃

(𝑎2 + 𝑎5 + 𝑏3 + 𝑑2)2
) (

𝑅𝑟

𝑑2
) 

= −0.00222303174 

Table 2: The effect of the parameters on  𝑹𝑳. 

Parameters Value Range Effect on 𝑹𝟎𝟏 

𝛽 4 × 10−9 9.0110964 × 1015 

𝜓 3 × 108 1.69 × 10−18 

𝑎3 0.181 4.4018101352 

𝜙 3 × 10−5 4311.2116885 

𝑎1 0.004 −9156.8606658 

𝜇 48 −0.0488762883 

𝜁 0.95 −0.0521115791 

𝑏4 0.0035 −14.144571463 

𝑎6 2.0 −0.0247530001 
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Table 3: The effect of the parameters on  𝑹𝒓. 

Parameters Value Range Effect on 𝑹𝟎𝟏 

𝛾 2.5 × 108 1.69 × 10−18 

𝛼 2 × 10−10 3.0401721 × 1018 

𝑎4 16 0.0004750269 

𝜃 2.5 × 10−5 2422.4090582 

𝑎2 0.0083 −1761.6460452 

𝜇 48 −0.0000527808 

𝑎5 0.24 −0.0879950061 

𝑏3 4.56 −0.0046313161 

𝑑2 0.95 −0.0222303174 

 

The sensitivity index 𝑍(𝛽), 𝑍(𝜓), 𝑍(𝑎3) 𝑎𝑛𝑑 𝑍(𝜙) are all positive and this shows that the value of 𝑅𝐿 increases 

as the value of 𝛽,𝜓, 𝑎3 𝑎𝑛𝑑 𝜙 increases. The remaining indices 𝑍(𝑎1), 𝑍(𝑏4), 𝑍(𝑎6), 𝑍(𝜇) 𝑎𝑛𝑑 𝑍(𝜁) are 

negative, indicating that the value 𝑅𝐿 decreases as 𝑎1, 𝑏4, 𝑎6, 𝜇 𝑎𝑛𝑑 𝜁 increases. Actually, the effectiveness of 

control may be measured by its effect on 𝑅𝐿. if the reduction in 𝑅𝐿 < 1 can be maintained by the parameters 

𝑎1, 𝑏4, 𝑎6, 𝜇 𝑎𝑛𝑑 𝜁, then it will reduce the endemicity of the disease. This implies that these parameters can help 

in reducing the rate of malaria infection over time in the liver and if it is maintained, the transmission of the 

disease may decrease, causing the cases in the liver population to go below an endemicity threshold.  

Similarly, the sensitivity index 𝑍(𝛾), 𝑍(𝛼), 𝑍(𝑎4) 𝑎𝑛𝑑 𝑍(𝜃) are all positive indicating that the value of 𝑅𝑟 

increases as the value of 𝛾, 𝛼, 𝑎4 𝑎𝑛𝑑 𝜃 increases. The indices of remaining parameters 

𝑍(𝑎2), 𝑍(𝑏3), 𝑍(𝑎5), 𝑍(𝜇) 𝑎𝑛𝑑 𝑍(𝑑2) are negative, and this shows that the value of 𝑅𝑟 decreases as 

𝑎2, 𝑏3, 𝑎5, 𝜇 𝑎𝑛𝑑 𝑑2 increases. Since the effectiveness of control may be measured by its effect on 𝑅𝑟 and if the 

reduction in 𝑅𝑟 < 1 can be maintained by the parameters 𝑎1, 𝑏4, 𝑎6, 𝜇 𝑎𝑛𝑑 𝜁, then endemicity of the disease in 

the erythrocyte will be reduced. Therefore, the parameters 𝑎1, 𝑏4, 𝑎6, 𝜇 𝑎𝑛𝑑 𝜁 can help in reducing the rate of 

malaria infection over time in the erythrocyte and if maintained, the transmission of the disease may decrease, 

causing the cases in the erythrocyte population to drop beyond the endemicity threshold.  

IV. Numerical Analysis and Results 

The numerical behavior of system (3.3) were studied using the parameter values given in table 1 and by 

considering initial conditions, φ = {𝑥(0), 𝑦(0), 𝑇𝑦(0), 𝑅(0), 𝐵(0), 𝐼(0), 𝑇𝐼(0), 𝑅1(0)}. The multiplication 

ability of meroziote in the hepatocyte is 
𝛽𝜓𝑎3

𝑎1𝜇
+ 𝜙 = 1.13128, while the probability that the red blood cell will 

be infected by sporozoites is 
1

𝜁+𝑎1+𝑎6+𝑏4
= 0.3381234151. Also, The multiplication ability of sporoziote in the 

erythrocyte is 
𝛾𝛼𝑎4

𝑎2𝜇
+ 𝜃 = 2.0080571285, while the probability that the human host will be infectious is 

1

𝑎2+𝑎5+𝑏3+𝑑2
= 0.1736623656. 

 

The numerical simulation are conducted using Matlab software and the results are given in figure 2 – 4 where 

figures 2i – 2iii illustrate the behavior of the reproductive number 𝑅𝐿for different values of the model parameter 

𝑏4 and 𝑏3 respectively. Figures 3i – 3iii also show the behavior of the reproductive number 𝑅𝑟for different 

values of the model parameter 𝜁 and 𝑑2 respectively where 𝜁 is represented with 𝑔4. Lastly, figures 4i – 4viii 

and 5i – 5viii show the varying effects of the immune system and treatment controls. 

 

The basic reproduction number of the system is given by 

 

𝑅0 = 𝑅𝐿 + 𝑅𝑟 = 0.731236209 < 1 
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indicating that the basic reproduction number is less than one. Therefore, the disease free equilibrium is stable 

showing that malaria infection can be controlled in the population using adequate treatment method. However, 

it also confirms the result of the sensitivity analysis of 𝑅𝐿 𝑎𝑛𝑑 𝑅𝑟 in tables 2 and 3 respectively. We then state 

that with effective treatment of infectious human, the future number of malaria infection cases will reduce in 

the population. 

 

 
Figures (2i – 2iii): Numerical Simulation of the Basic Reproduction Number R_L and R_r using different rate 

of b_4 and b_3, (Immune Control) 

 

 
Figures (3i – 3iii): Numerical Simulation of the Basic Reproduction Number R_L and r using different rate of 

g_4 and d_2 (Treatment Control) 
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Figures (4i – 4viii): Numerical Simulation of model system (3.3), when there are immune and treatment control 

from 0 -8days. 
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Figures (5i – 5viii): Numerical Simulation of model system (3.3), when there are immune and treatment control 

from 0 -30days.

 

The numerical simulation of immune response, 

treatment and disease free equilibrium point were 

performed to establish long term effects. Parameter 

values used in the simulations are given in table1. The 

simulation of the basic reproduction number,  

R_0=R_L+R_r  as in figures 2i – 2iii shows that the 

immune response is effective in reducing the density 

of the parasites both in the liver cells and red blood 

cells. It indicates that the infection rate of the 

hepatocytes and erythrocytes are respectively reduced 

as the merozoites are suppressed and the sporozoites 

being cleared. Also, from figures 3i – 3iii, we observe 

that there is a perfect treatment since the reproduction 

numbers R_L  and R_r  under treatment are all less  

 

than one and R_0=R_L+R_r is less than one. This 

implies that there exists the clearance of malaria 

parasites in both the liver and blood. Therefore with 

this reduction in infectious reservoirs, malaria can be 

greatly reduced in the population. If efficacy was 

equal to zero, that is R_0=(R_L+R_r )>1, immune 

response and treatment would have been useless. 

 

Figures 4i – 4viii and 5i – 5viii show the disease free 

dynamics of malaria infection at hepatocytes of the 

liver and erythrocytes of the blood. The result shows 

that in the absence of malaria, the susceptible 

hepatocytes and erythrocytes respectively increases. 

Also, there is a sharp fall in the density of the 
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infectious hepatocytes and erythrocytes. This 

indicates that the population of merozoites and 

sporozoites in the hepatocytes and erythrocytes will 

respectively decrease. Observe that new infectious 

mosquitoes repeatedly bite an individual to continue 

the life cycle to naïve individuals, activating the 

immune response against the infection. With an 

increase in treatment effectiveness, the density of the 

uninfected and recovered hepatocytes and 

erythrocytes increases, while the population of 

infected hepatocytes and erythrocytes decreases to 

lower value because the efficacy of the treatment used 

is high. 

 

V. Discussion and Conclusion 

The proposed study of the simulation of an 

intracellular differential equation model of the 

dynamics of malaria with immune control and 

treatment was designed and analyzed using ten 

compartments which were later simplified to eight 

compartments. The model studied malaria infection 

both in liver and blood. It also incorporated the effect 

of immune response and treatment of the infection 

respectively in the liver and blood stages. The 

analysis of the model as was presented by the 

positivity and existence of the systems solution shows 

that solutions exist. The results in this model indicate 

that the disease free equilibrium is asymptotically 

stable when R_0=(R_L+R_r )<1  and unstable when 

R_0=(R_L+R_r )>1. in this study, the parameters, 

ζ,b_3,b_4,and d_2 were significant in the successful 

clearance of malaria parasites. The sensitivity indices 

of these parameters were negative which indicates 

that increase in them results to reduction in malaria. 

The simulation result shows that with effective 

treatment, the density of uninfected hepatocytes and 

erythrocytes, treated hepatocytes and erythrocytes and 

recovered hepatocytes and erythrocytes increases. 

This simply means that the number of merozoites in 

the liver and sporozoites in the blood will be reduced 

and this implies clearance of malaria. 
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