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ABSTRACT

This research paper presents the different types of 
sorting algorithms of data structure like quick, heap, 
insertion and merges and also gives their performance 
analysis with respect to time complexity. These four 
algorithms have been an area of focus for 
but still the question remains the same of “which to 
use when?” which is the main reason to perform this 
research. This research provides a detailed study of 
how all the four algorithms work and then compares 
them on the basis of various parameters apart from 
time complexity to reach our conclusion. 
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Merge sort, time complexity, other performance 
parameters 
 
I. INTRODUCTION  

In the present scenario an algorithm and data structure 
play a significant role for the implementation and 
design of any software. In data domain, sorting refers 
to the operation of arranging numerical data in 
increasing or decreasing order or non numerica
in alphabetical order [1]. Among quick, heap, 
insertion and merge it would be interesting to see their 
worst case complexities which are O(N^2), 
O(NlogN), O(N^2), O(NlogN) respectively[2]. The 
efficiency of a sorting algorithm depends on how fast 
and accurately it sorts a list and also how much space 
it requires in the memory. Among all, it can be seen 
that insertion and quick sort perform with the order of 
n^2 contrast to heap and merge performing with the 
order of nlogn. On the other hand if we stu
space complexity we will find that the quick, heap and 
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use when?” which is the main reason to perform this 
research. This research provides a detailed study of 
how all the four algorithms work and then compares 

ters apart from 
time complexity to reach our conclusion.  

: Quick sort, Heap sort, Insertion sort, 
Merge sort, time complexity, other performance 

In the present scenario an algorithm and data structure 
play a significant role for the implementation and 
design of any software. In data domain, sorting refers 
to the operation of arranging numerical data in 
increasing or decreasing order or non numerical data 
in alphabetical order [1]. Among quick, heap, 
insertion and merge it would be interesting to see their 
worst case complexities which are O(N^2), 
O(NlogN), O(N^2), O(NlogN) respectively[2]. The 
efficiency of a sorting algorithm depends on how fast 

d accurately it sorts a list and also how much space 
it requires in the memory. Among all, it can be seen 
that insertion and quick sort perform with the order of 
n^2 contrast to heap and merge performing with the 
order of nlogn. On the other hand if we study their 
space complexity we will find that the quick, heap and 

insertion have the complexity of the O(1) where as the 
space complexity of merge sort is O(n)[2]. So to 
assess the performance of an algorithm
two parameters are most important i

II. WORKING PROCEDURE OF 
ALGORITHMS  

A. QUICK SORT:  

This sorting algorithm is based on Divide
Conquer paradigm that is the problem of sorting a set 
is reduced to the problem of sorting two smaller sets. 
The three step divide and conquer str
a typical sub array A[p….r] is as follows: 
 
1) Divide: The array A[p….r] is 

partitioned(rearranged) into two non
arrays A[p….q] and A[q+1....r] such that each 
element of A[p….q] is less than or equal to each 
element of A[q+1….r]. The index of q is 
completed as part of this partitioning procedure. 

2) Conquer: The 2 sub arrays A[p….q] and 
A[q+1….r] are sorted by recursive calls to quick 
sort procedure[4].  

3) Combine: Since the sub arrays are sorted in place, 
no work is headed to combine them, the entire 
array A[p....r] is now sorted. 
 

The algorithm is divided into two parts. The first part 
gives a procedure called QUICK, which executes the 
reduction steps of the algorithm and the second part 
uses QUICK to sort the entire list. 
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insertion have the complexity of the O(1) where as the 
space complexity of merge sort is O(n)[2]. So to 
assess the performance of an algorithm [3] the above 
two parameters are most important in their own.  

II. WORKING PROCEDURE OF 

This sorting algorithm is based on Divide-and-
Conquer paradigm that is the problem of sorting a set 
is reduced to the problem of sorting two smaller sets. 
The three step divide and conquer strategy for sorting 
a typical sub array A[p….r] is as follows:  

The array A[p….r] is 
partitioned(rearranged) into two non-empty sub 
arrays A[p….q] and A[q+1....r] such that each 
element of A[p….q] is less than or equal to each 
element of A[q+1….r]. The index of q is 
completed as part of this partitioning procedure.  

The 2 sub arrays A[p….q] and 
A[q+1….r] are sorted by recursive calls to quick 

Since the sub arrays are sorted in place, 
no work is headed to combine them, the entire 
array A[p....r] is now sorted.  

The algorithm is divided into two parts. The first part 
gives a procedure called QUICK, which executes the 
reduction steps of the algorithm and the second part 
uses QUICK to sort the entire list.  
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1) Procedure: QUICK (A,N,BEGIN,END,LOCN)  
Here A is an array of N elements. Parameters BEGIN and END contain the boundary values of the sub list of A 
to which this procedure applies. LOCN keeps the track of the position of the first element A[BEGIN] of the sub 
list during the procedure. The local variables LEFT and RIGHT will contain the boundary values of the list of 
elements that have not been scanned. Steps:  
1. [Initialize] set LEFT:=BEGIN, RIGHT:=END, and LOCN:=BEGIN.  
2. [Scan from right to left.]  

a. Repeat while A[(LOCN)<=A[RIGHT] and LOCN!=RIGHT: RIGHT :=RIGHT – 1. [End of loop.]  
b. If LOCN=RIGHT, then: return.  
c. If A[LOCN]>A[RIGHT], then:  

i. [Interchange A[LOCN] and A[RIGHT].] 
TEMP:=A[LOCN),A[LOCN]:=a[RIGHT),a[RIGHT]:=TEMP.  

ii. Set LOCN:=RIGHT.  
iii. iii)Go to Step 3. [End of If structure.]  

3. [Scan from left to right.]  
a. Repeat while A[LEFT]<=A[LOCN) and LEFT!=LOCN: LEFT=LEFT+1. [End of Loop.]  
b. If LOCN=LEFT, then: Return. c) If A[LEFT]>A[LOCN], then  

i. [Interchange A[LEFT] and A[LOCN].] TEMP:=A[LOCN], 
A[LOCN]:=A[LEFT],A[LEFT]:=TEMP. ii) set LOCN:=LEFT. iii) Go to Step ii. [End of if 
structure.]  

2) Algorithm[5]:  
The quick sort algorithm sorts an array A with N elements in the following way.  

1. [Initialize] TOP:=Null  
2. [Push boundary values of A onto stacks when A has 2 or more elements.] If N>1, then TOP: TOP+1, 

LOWER [1]:=1, UPPER [1]=N.  
3. Repeat steps 4 to 7 while TOP! =NULL.  
4. [Pop sub lists form stacks.] Set BEGIN: =LOWER [TOP], END: =UPPER [TOP], TOP:=TOP-1.  
5. Call QUICK (A, N, BEGIN, END, LOCN).[Procedure]  
6. [Push left sub list onto stacks when it has 2 or more elements.] If BEGIN<(LOCN-1),then: 

TOP:=(TOP+1),LOWER[TOP]:=BEGIN, UPPER[TOP]=(LOCN-1). [end of if structure.]  
7. [Push right sub list onto stacks when it has 2 or more elements.] If (LOCN+1)<END, then: 

TOP:=TOP+1, LOWER[TOP]:= LOCN+1, UPPER[TOP]:=END. [end of if structure.] [end of Step 3 
loop.]  

8. Exit.  
The Figure1 below shows how quick sort algorithm works the elements in the list are: 3, 1, 2, 4, 5, 9, 6, 8, 7 the 
pivot element here is 5.  
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Figure 1: Working of Quick Sort 
4) Time Complexity Of Quick Sort: The running time of a sorting algorithm is usually measured by the 

number f(n) of comparisons required to sort n elements[6]. The recurrence relation for quick sort is given 
by:  
 

i. Best-case analysis:  
The pivot is in the middle:  
T(N) = 2T(N/2) + cN  
Dividing by N: T(N) / N = T(N/2) / (N/2) + c  
On solving: T(N/2) / (N/2) = T(N/4) / (N/4) + c T(N/4) / (N/4) = T(N/8) / (N/8) + c…… T(2) / 2 = T(1) / (1) + c  
Adding all equations: T(N) / N + T(N/2) / (N/2) + T(N/4) / (N/4) + …. + T(2) / 2 = (N/2) / (N/2) + T(N/4) / 
(N/4) + … + T(1) / (1) + c.logN  
After crossing the equal terms: T(N)/N = T(1) + cLogN = 1 + cLogN T(N) = N + NcLogN Therefore T(N) = 
O(NlogN)  
 
ii. Average case analysis:  
Similar computations, resulting in T(N) = O(NlogN) 
The average value of T(i) is 1/N times the sum of T(0) through T(N-1) 1/N S T(j), j = 0 thru N-1 T(N) = 2/N (S 
T(j)) + cN  
Multiply by N NT(N) = 2(S T(j)) + cN*N  
To remove the summation, we rewrite the equation for  
N-1: (N-1)T(N-1) = 2(S T(j)) + c(N-1)2, j = 0 thru N-2 and  
Subtract: NT(N) - (N-1)T(N-1) = 2T(N-1) + 2cN -c  
On solving continuously, rearrange terms, drop the insignificant c:  
NT(N) = (N+1)T(N-1) + 2cN  
Divide by  
N(N+1): T(N)/(N+1) = T(N-1)/N + 2c/(N+1)  
On solving:  
T(N)/(N+1) = T(N-1)/N + 2c/(N+1) T(N-1)/(N) = T(N-2)/(N-1)+ 2c/(N) T(N-2)/(N-1) = T(N-3)/(N-2) + 2c/(N-
1)…. T(2)/3 = T(1)/2 + 2c /3  
Add the equations and cross equal terms: T(N)/(N+1) = T(1)/2 +2c S (1/j), j = 3 to N+1 T(N) = (N+1)(1/2 + 2c 
S(1/j)) The sum S (1/j), j =3 to N-1, is about LogN  
Thus T(N) = O(nlogn).  
 
iii. Worst Case Analysis:  
This happens when the pivot is the smallest (or the largest) element. T(N) = T(i) + T(N - i -1) + cN T(N) = 
T(N-1) + cN, N > 1  
On continuously solving:  
T(N-1) = T(N-2) + c(N-1) T(N-2) = T(N-3) + c(N-2) T(N-3) = T(N-4) + c(N-3) T(2) = T(1) + c.2  
Adding all equations we get:  
T(N) + T(N-1) + T(N-2) + … + T(2) = T(N-1) + T(N-2) + … + T(2) + T(1) + c(N) + c(N-1) + c(N-2) + … + 
c.2 T(N) = T(1) + c(2 + 3 + … + N) T(N) = 1 + c(N(N+1)/2 -1)  
Therefore T(N) = O(n2)  
 
B. HEAP SORT: The heap(binary) data structure is 
an array object that can be viewed as a complete 
binary tree as shown in figure1[7]:  
 
Each node of the tree corresponds to an element of the 
array that stores the value in the node. The tree is 
completely filled on all levels except possibly the 
lowest, which is filled from the left up to a point. An 

array B that represents a heap is an object with two 
attributes: length[B] which is the number of elements 
in the array and heap-size[B], the number of elements 
in the heap stored within array B. The root of the tree 
is B[1] and given the index I of a node, the indices of 
its parent PARENT(i), left child LEFT(i), and right 
child. RIGHT(i) can be computed simply: 
PARENT(i): return └i/2┘ LEFT(i): return 2i 
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RIGHT(i): return 2i+1; Heaps also satisfy the “heap 
property” for every node I other than the root, 
A[PARENT(i)]>=A[i] i.e, the value of a node is at 
most the value of its parent. Thus, the largest element 
in a heap is stored at the root, and the sub trees rooted 
at a node contain smaller values smaller values than 
does the node itself.  

 
Figure 2: Structure of a heap 

 
1) Algorithm[8]:  
The three basic procedures used in the heap sort are:-  
 
a) Heapify: The function of Heapify is to let the value 
at B[i] “float down” in the heap so that the sub tree 
rooted at index I becomes a heap.  
Algorithm Heapify(B,i):  

1. l LEFT(i)  
2. rRIGHT(i)  
3. If l<=heap-size[B] and B[l]>B[i]  
4. Then largestl  
5. Else largesti  
6. If r<=heap size[B] and B[r]>B[largest]  
7. Then largestr  
8. If largest! =i  
9. Then exchange B[i]B[largest]  
10. Heapify(B,largest)  

 
b) Build-Heap(B): goes through the remaining nodes 
of the tree and runs Heapify on each one. The order in 
which the nodes are processed guarantees that the sub 
trees rooted at children at children of a node I are 
heaps before Heapify is run on that node.  
Build-Heap (B)  

1. heap-size[B]length[A]  
2. For i└length [B]/2┘down to 1.  
3. Do Heapify(B,i). Running time of Build-

HEAP is O(n).  

a. The HEAPSORT procedure (algorithm): 
starts by using Buil-Heap to build a heap 
on the i/p array B[1….n], where 
n=length[B].  

 
Algorithm: HEAPSORT(B):  

1. Build-Heap (B)  
2. For ilength [B] down to 2  
3. Do exchange B[1]B[i]  
4. heap-size [B]heap-size [B]-1.  
5. Heapify[B,1]  

 
2) Time Complexity Of Heap Sort[9]- 1. Creation of 
Heap is the process in which a number of 
comparisons takes place thereby taking logn time. 2. 
Denoting depth in form of nodes(n): 
20+21+22+…..2d-1=n(no. of nodes) Geometric 
Progression: Sum=a(rn-1)/r-1 n=1(2d-1)/2-1 log 
n=log 2d-1/1 log n = log 2d-log 1 d log22=log(n+1) 
d=log(n+1)=>log n depth of a complete Binary 
tree=log n for 1 element=> number of comparison 
takes log n time therefore for n elements time taken 
for comparisons is T(n)=O(nlogn). Time complexity 
for heap sort in average as well as worst case lies the 
same i.e T(n)=O(nlogn).  
 
C. INSERTION SORT:  
This algorithm considers the elements one at a time, 
inserting each in its suitable place among those 
already considered (keeping them sorted). Insertion 
sort is an example of an incremental algorithm. It 
builds the sorted sequence one element at a time.  
 
1) Algorithm[11]:  
We use a procedure INSERTION_SORT. It takes an 
array A[1.. n] as parameter. The array A is sorted in 
place: the numbers are rearranged within the array, 
with at most a constant number outside the array at 
any time. The algorithm for insertion sort is as 
follows: INSERTION_SORT (A) 1. FOR j ← 2 TO 
length[A] 2. DO key ← A[j] 3. {Put A[j] into the 
sorted sequence A[1 . . j − 1]} 4. i ← j − 1 5. WHILE 
i > 0 and A[i] > key 6. DO A[i +1] ← A[i] 7. i ← i − 1 
8. A[i + 1] ← key  
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Figure 3 shows the process of insertion sorting 

 
2) Time Complexity of Insertion Sort[10]  

Since the running time of an algorithm on a particular 
input is the number of steps executed, we must define 
"step" independent of machine. We say that a 
statement that takes ci steps to execute and executed n 
times contributes ci*n to the total running time of the 
algorithm. To compute the running time, T(n), we 
sum the products of the cost and times column. That 
is, the running time of the algorithm is the sum of 
running times for each statement executed. So, we 
have  

T(n) = c1n + c2 (n − 1) + 0 (n − 1) + c4 (n − 1) + c5 
Σ2 ≤ j ≤ n ( tj )+ c6 Σ2 ≤ j ≤ n (tj − 1) + c7 Σ2 ≤ j ≤ n 
(tj − 1)+ c8 (n − 1)-----Eq.1 In the above equation we 
supposed that tj be the number of times the while-loop 
(in line 5) is executed for that value of j. Note that the 
value of j runs from 2 to (n − 1). We have  
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n ( 
tj )+ c6 Σ2 ≤ j ≤ n (tj − 1) + c7 Σ2 ≤ j ≤ n (tj − 1) + c8 
(n − 1) Eq.2  
 
i. Best-Case Analysis[12]:  
The best case occurs if the array is already sorted. For 
each value of j = 2, 3, ..., n, we find that A[i] is less 
than or equal to the key when i has its initial value of 
(j − 1). In other words, when i = j −1, always find the 
key A[i] upon the first time the WHILE loop is run. 
Therefore, tj = 1 for j = 2, 3, ..., n and the best-case 
running time can be computed using equation (2) as 
follows:  
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n 
(1) + c6 Σ2 ≤ j ≤ n (1 − 1) + c7 Σ2 ≤ j ≤ n (1 − 1) + c8 
(n − 1)  
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 (n − 1) + c8 
(n − 1)  

T(n) = (c1 + c2 + c4 + c5 + c8 ) n + (c2 + c4 + c5 + 
c8)  
This running time can be expressed as an + b for 
constants a and b that depend on the statement cost ci. 
Therefore, T(n) it is a linear function of n. The main 
concept here is that the while-loop in line 5 executed 
only once for each j. This happens if given array A is 
already sorted. T(n) = an + b = O(n) It is a linear 
function of n.  
 
ii. Worst-Case Analysis[13]:  
The worst-case occurs if the array is sorted in reverse 
order i.e., in decreasing order. In the reverse order, we 
always find that A[i] is greater than the key in the 
while-loop test. So, we must compare each element 
A[j] with each element in the entire sorted subarray 
A[1 .. j − 1] and so tj = j for j = 2, 3, ..., n. 
Equivalently, we can say that since the while-loop 
exits because i reaches to 0, there is one additional 
test after (j − 1) tests. Therefore, tj = j for j = 2, 3, ..., 
n and the worst-case running time can be computed 
using equation (2) as follows: 
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n ( j 
) + c6 Σ2 ≤ j ≤ n(j − 1) + c7 Σ2 ≤ j ≤ n(j − 1) + c8 (n − 
1)  
And using the summations, we have: T(n) = c1n + c2 
(n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n [n(n +1)/2 + 1] + 
c6 Σ2 ≤ j ≤ n [n(n − 1)/2] + c7 Σ2 ≤ j ≤ n [n(n − 1)/2] 
+ c8 (n − 1) T(n) = (c5/2 + c6/2 + c7/2) n2 + (c1 + c2 
+ c4 + c5/2 − c6/2 − c7/2 + c8) n − (c2 + c4 + c5 + 
c8)  
 
This running time can be expressed as (an2 + bn + c) 
for constants a, b, and c that again depends on the 
statement costs ci. Therefore, T(n) is a quadratic 
function of n. Here the main concept is that the worst-
case occurs, when line 5 executed j times for each j. 
This can happens if array A starts out in reverse order 
T(n) = an2 + bn + c = O(n2) It is a quadratic function 
of n2.  
 
D. MERGE SORT:  

This algorithm is also based on Divide-and-Conquer 
approach. Given a sequence of elements also called 
keys c[1],….,c[n], the general idea is to imagine them 
split into two sets c[1],….c[└n/2┘] and 
c[└n/2┘+1],….,c[n].Each set is individually sorted 
and the resulting sorted sequence are merged to 
produce a single sorted sequence of n elements[9].  

Algorithm [14][15]:The algorithm is divided into two 
parts: the first part will be procedures MERGEPASS, 
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which is used to execute a single pass of the algorithm 
and the second part will repeatedly apply 
MERGEPASS until C is sorted. 
Algorithm MERGEPASS(C,N,L,D): The N element 
array A is composed of sorted sub arrays where each 
sub array has L elements possibly the last sub array, 
which may have fewer than L elements. The 
procedure merges the pairs of sub arrays of C and 
assigns them to the array D. Dividing n by 2*L, we 
obtain the quotient Q, which tells the number of pairs 
of L-element sorted sub arrays ; that is 
Q=INTEGER(N/(2*L))  

 
Figure 4 shows the process of merge sorting 

 
1. Set Q= INTEGER(N/(2*L)), S:=2*L*Q(total no. 

of elements in Q pairs of sub arrays, and R=N-
S(no. of remaining elements)  

2. Merge the Q pairs of sub arrays.[repeat for 
J=1,2,….Q:  

a. Set LB(lower bound):=1+(2*J-2)*L.  
b. Call MERGE(C, L, LB, A, L, LB, D, LB). 

[end of loop.]  
3. [only one sub array left?] If R<=L, then: Repeat 

for j=1,2,….R: Set D(S+J):=C(S+J). [end of loop.] 

Else: call MERGE(C,L,S+1,C,R,L+S+1,B,S+1). 
[end of if structure.]  

4. return.  
Algorithm MERGESORT(C,N) This algorithm sorts 
the N-element array C using an auxiliary array D.  

1. set L:=1.[initialize the no. of elements in the 
sub arrays.]  

2. Repeat steps 3 to 6 while L<N:  
3. 3.call MERGEPASS(C,N,L,D).  
4. 4.call MERGEPASS(D,N,2*L,A).  
5. set L:=4*L. [end of step 2 loop.]  
6. exit.  

 
2) Time Complexity Of Merge Sort[16][17]:  
The recurrence relation for the merge sort is as 
follows[11]:  
2T(n/2)+cn When n=power of 2,n=2k,  
solving the above recurrence relation by successive 
substitution we get: T(n)=2(2T(n/4)+cn/2)+cn = 
4T(n/4)+2cn = 4(2T(n/8)+cn/4)+2cn - - - = 
2kT(1)+kcn = an+cnlog n 2k<n<2k+1 T(n)<=T(2k+1)  
Therefore, T(n)=O(nlogn) Time complexity for heap 
sort in average as well as worst case lies the same i.e 
T(n)=O(nlogn).  
 
III. EXPERIMENT AND RESULT TO 

MEASURE THE PERFORMANCE OF 
ALGORITHMS  

In this experiment we have used C# in which the data 
set contains random numbers. The initial range of data 
set starts from 50 to 10000 elements with increment 
of 100 elements and later the size of elements 
increased and reached to 30000 with the interval of 
1000 elements. Table1 shows this data set and clock 
tick measurement and the table 2 shows the total time 
taken by the algorithm in seconds to sort the elements. 
The table 3 shows the comparative study of their 
characteristics, time as well as space complexities.  
 

 

 
 

TABLE 1: shows the number of clock ticks taken by the three algorithms for sorting 
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TABLE 2: shows time taken(in seconds) by the three algorithms to sort the array 

 

 
TABLE 3: shows comparison of the three sorting techniques on various parameters 

 
Figure 5: Graph comparing all the three algorithms. 

 
IV. CONCLUSION  

From the above analysis it can be said that in a list of 
random numbers from 10000 to 30000, insertion sort 
takes more time to sort as compare to heap, quick and 
merge sorting techniques. If we take worst case 
complexity of all the four sorting techniques then 
insertion sort and quick sort technique gives the result 
of the order of N^2, but here if one needs to sort a list 

in this range then quick sorting technique will be 
more helpful than the other techniques.  
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