

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Performance A
of Sorting Algorithms using Different L

Assistant Professor, Department of Computer
Stella Maris College

ABSTRACT

This research paper presents the different types of
sorting algorithms of data structure like quick, heap,
insertion and merges and also gives their performance
analysis with respect to time complexity. These four
algorithms have been an area of focus for
but still the question remains the same of “which to
use when?” which is the main reason to perform this
research. This research provides a detailed study of
how all the four algorithms work and then compares
them on the basis of various parameters apart from
time complexity to reach our conclusion.

Keywords: Quick sort, Heap sort, Insertion sort,
Merge sort, time complexity, other performance
parameters

I. INTRODUCTION

In the present scenario an algorithm and data structure
play a significant role for the implementation and
design of any software. In data domain, sorting refers
to the operation of arranging numerical data in
increasing or decreasing order or non numerica
in alphabetical order [1]. Among quick, heap,
insertion and merge it would be interesting to see their
worst case complexities which are O(N^2),
O(NlogN), O(N^2), O(NlogN) respectively[2]. The
efficiency of a sorting algorithm depends on how fast
and accurately it sorts a list and also how much space
it requires in the memory. Among all, it can be seen
that insertion and quick sort perform with the order of
n^2 contrast to heap and merge performing with the
order of nlogn. On the other hand if we stu
space complexity we will find that the quick, heap and

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Performance Analysis of Four Different Types
of Sorting Algorithms using Different Languages

Dr. I. Lakshmi
Assistant Professor, Department of Computer Science,

Stella Maris College, Chennai, India

This research paper presents the different types of
sorting algorithms of data structure like quick, heap,
insertion and merges and also gives their performance
analysis with respect to time complexity. These four
algorithms have been an area of focus for a long time
but still the question remains the same of “which to
use when?” which is the main reason to perform this
research. This research provides a detailed study of
how all the four algorithms work and then compares

ters apart from
time complexity to reach our conclusion.

: Quick sort, Heap sort, Insertion sort,
Merge sort, time complexity, other performance

In the present scenario an algorithm and data structure
play a significant role for the implementation and
design of any software. In data domain, sorting refers
to the operation of arranging numerical data in
increasing or decreasing order or non numerical data
in alphabetical order [1]. Among quick, heap,
insertion and merge it would be interesting to see their
worst case complexities which are O(N^2),
O(NlogN), O(N^2), O(NlogN) respectively[2]. The
efficiency of a sorting algorithm depends on how fast

d accurately it sorts a list and also how much space
it requires in the memory. Among all, it can be seen
that insertion and quick sort perform with the order of
n^2 contrast to heap and merge performing with the
order of nlogn. On the other hand if we study their
space complexity we will find that the quick, heap and

insertion have the complexity of the O(1) where as the
space complexity of merge sort is O(n)[2]. So to
assess the performance of an algorithm
two parameters are most important i

II. WORKING PROCEDURE OF
ALGORITHMS

A. QUICK SORT:

This sorting algorithm is based on Divide
Conquer paradigm that is the problem of sorting a set
is reduced to the problem of sorting two smaller sets.
The three step divide and conquer str
a typical sub array A[p….r] is as follows:

1) Divide: The array A[p….r] is

partitioned(rearranged) into two non
arrays A[p….q] and A[q+1....r] such that each
element of A[p….q] is less than or equal to each
element of A[q+1….r]. The index of q is
completed as part of this partitioning procedure.

2) Conquer: The 2 sub arrays A[p….q] and
A[q+1….r] are sorted by recursive calls to quick
sort procedure[4].

3) Combine: Since the sub arrays are sorted in place,
no work is headed to combine them, the entire
array A[p....r] is now sorted.

The algorithm is divided into two parts. The first part
gives a procedure called QUICK, which executes the
reduction steps of the algorithm and the second part
uses QUICK to sort the entire list.

Feb 2018 Page: 535

6470 | www.ijtsrd.com | Volume - 2 | Issue – 2

Scientific
(IJTSRD)

International Open Access Journal

nalysis of Four Different Types
anguages

insertion have the complexity of the O(1) where as the
space complexity of merge sort is O(n)[2]. So to
assess the performance of an algorithm [3] the above
two parameters are most important in their own.

II. WORKING PROCEDURE OF

This sorting algorithm is based on Divide-and-
Conquer paradigm that is the problem of sorting a set
is reduced to the problem of sorting two smaller sets.
The three step divide and conquer strategy for sorting
a typical sub array A[p….r] is as follows:

The array A[p….r] is
partitioned(rearranged) into two non-empty sub
arrays A[p….q] and A[q+1....r] such that each
element of A[p….q] is less than or equal to each
element of A[q+1….r]. The index of q is
completed as part of this partitioning procedure.

The 2 sub arrays A[p….q] and
A[q+1….r] are sorted by recursive calls to quick

Since the sub arrays are sorted in place,
no work is headed to combine them, the entire
array A[p....r] is now sorted.

The algorithm is divided into two parts. The first part
gives a procedure called QUICK, which executes the
reduction steps of the algorithm and the second part
uses QUICK to sort the entire list.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 531

1) Procedure: QUICK (A,N,BEGIN,END,LOCN)
Here A is an array of N elements. Parameters BEGIN and END contain the boundary values of the sub list of A
to which this procedure applies. LOCN keeps the track of the position of the first element A[BEGIN] of the sub
list during the procedure. The local variables LEFT and RIGHT will contain the boundary values of the list of
elements that have not been scanned. Steps:
1. [Initialize] set LEFT:=BEGIN, RIGHT:=END, and LOCN:=BEGIN.
2. [Scan from right to left.]

a. Repeat while A[(LOCN)<=A[RIGHT] and LOCN!=RIGHT: RIGHT :=RIGHT – 1. [End of loop.]
b. If LOCN=RIGHT, then: return.
c. If A[LOCN]>A[RIGHT], then:

i. [Interchange A[LOCN] and A[RIGHT].]
TEMP:=A[LOCN),A[LOCN]:=a[RIGHT),a[RIGHT]:=TEMP.

ii. Set LOCN:=RIGHT.
iii. iii)Go to Step 3. [End of If structure.]

3. [Scan from left to right.]
a. Repeat while A[LEFT]<=A[LOCN) and LEFT!=LOCN: LEFT=LEFT+1. [End of Loop.]
b. If LOCN=LEFT, then: Return. c) If A[LEFT]>A[LOCN], then

i. [Interchange A[LEFT] and A[LOCN].] TEMP:=A[LOCN],
A[LOCN]:=A[LEFT],A[LEFT]:=TEMP. ii) set LOCN:=LEFT. iii) Go to Step ii. [End of if
structure.]

2) Algorithm[5]:
The quick sort algorithm sorts an array A with N elements in the following way.

1. [Initialize] TOP:=Null
2. [Push boundary values of A onto stacks when A has 2 or more elements.] If N>1, then TOP: TOP+1,

LOWER [1]:=1, UPPER [1]=N.
3. Repeat steps 4 to 7 while TOP! =NULL.
4. [Pop sub lists form stacks.] Set BEGIN: =LOWER [TOP], END: =UPPER [TOP], TOP:=TOP-1.
5. Call QUICK (A, N, BEGIN, END, LOCN).[Procedure]
6. [Push left sub list onto stacks when it has 2 or more elements.] If BEGIN<(LOCN-1),then:

TOP:=(TOP+1),LOWER[TOP]:=BEGIN, UPPER[TOP]=(LOCN-1). [end of if structure.]
7. [Push right sub list onto stacks when it has 2 or more elements.] If (LOCN+1)<END, then:

TOP:=TOP+1, LOWER[TOP]:= LOCN+1, UPPER[TOP]:=END. [end of if structure.] [end of Step 3
loop.]

8. Exit.
The Figure1 below shows how quick sort algorithm works the elements in the list are: 3, 1, 2, 4, 5, 9, 6, 8, 7 the
pivot element here is 5.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 537

Figure 1: Working of Quick Sort
4) Time Complexity Of Quick Sort: The running time of a sorting algorithm is usually measured by the

number f(n) of comparisons required to sort n elements[6]. The recurrence relation for quick sort is given
by:

i. Best-case analysis:
The pivot is in the middle:
T(N) = 2T(N/2) + cN
Dividing by N: T(N) / N = T(N/2) / (N/2) + c
On solving: T(N/2) / (N/2) = T(N/4) / (N/4) + c T(N/4) / (N/4) = T(N/8) / (N/8) + c…… T(2) / 2 = T(1) / (1) + c
Adding all equations: T(N) / N + T(N/2) / (N/2) + T(N/4) / (N/4) + …. + T(2) / 2 = (N/2) / (N/2) + T(N/4) /
(N/4) + … + T(1) / (1) + c.logN
After crossing the equal terms: T(N)/N = T(1) + cLogN = 1 + cLogN T(N) = N + NcLogN Therefore T(N) =
O(NlogN)

ii. Average case analysis:
Similar computations, resulting in T(N) = O(NlogN)
The average value of T(i) is 1/N times the sum of T(0) through T(N-1) 1/N S T(j), j = 0 thru N-1 T(N) = 2/N (S
T(j)) + cN
Multiply by N NT(N) = 2(S T(j)) + cN*N
To remove the summation, we rewrite the equation for
N-1: (N-1)T(N-1) = 2(S T(j)) + c(N-1)2, j = 0 thru N-2 and
Subtract: NT(N) - (N-1)T(N-1) = 2T(N-1) + 2cN -c
On solving continuously, rearrange terms, drop the insignificant c:
NT(N) = (N+1)T(N-1) + 2cN
Divide by
N(N+1): T(N)/(N+1) = T(N-1)/N + 2c/(N+1)
On solving:
T(N)/(N+1) = T(N-1)/N + 2c/(N+1) T(N-1)/(N) = T(N-2)/(N-1)+ 2c/(N) T(N-2)/(N-1) = T(N-3)/(N-2) + 2c/(N-
1)…. T(2)/3 = T(1)/2 + 2c /3
Add the equations and cross equal terms: T(N)/(N+1) = T(1)/2 +2c S (1/j), j = 3 to N+1 T(N) = (N+1)(1/2 + 2c
S(1/j)) The sum S (1/j), j =3 to N-1, is about LogN
Thus T(N) = O(nlogn).

iii. Worst Case Analysis:
This happens when the pivot is the smallest (or the largest) element. T(N) = T(i) + T(N - i -1) + cN T(N) =
T(N-1) + cN, N > 1
On continuously solving:
T(N-1) = T(N-2) + c(N-1) T(N-2) = T(N-3) + c(N-2) T(N-3) = T(N-4) + c(N-3) T(2) = T(1) + c.2
Adding all equations we get:
T(N) + T(N-1) + T(N-2) + … + T(2) = T(N-1) + T(N-2) + … + T(2) + T(1) + c(N) + c(N-1) + c(N-2) + … +
c.2 T(N) = T(1) + c(2 + 3 + … + N) T(N) = 1 + c(N(N+1)/2 -1)
Therefore T(N) = O(n2)

B. HEAP SORT: The heap(binary) data structure is
an array object that can be viewed as a complete
binary tree as shown in figure1[7]:

Each node of the tree corresponds to an element of the
array that stores the value in the node. The tree is
completely filled on all levels except possibly the
lowest, which is filled from the left up to a point. An

array B that represents a heap is an object with two
attributes: length[B] which is the number of elements
in the array and heap-size[B], the number of elements
in the heap stored within array B. The root of the tree
is B[1] and given the index I of a node, the indices of
its parent PARENT(i), left child LEFT(i), and right
child. RIGHT(i) can be computed simply:
PARENT(i): return └i/2┘ LEFT(i): return 2i

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 538

RIGHT(i): return 2i+1; Heaps also satisfy the “heap
property” for every node I other than the root,
A[PARENT(i)]>=A[i] i.e, the value of a node is at
most the value of its parent. Thus, the largest element
in a heap is stored at the root, and the sub trees rooted
at a node contain smaller values smaller values than
does the node itself.

Figure 2: Structure of a heap

1) Algorithm[8]:
The three basic procedures used in the heap sort are:-

a) Heapify: The function of Heapify is to let the value
at B[i] “float down” in the heap so that the sub tree
rooted at index I becomes a heap.
Algorithm Heapify(B,i):

1. l LEFT(i)
2. rRIGHT(i)
3. If l<=heap-size[B] and B[l]>B[i]
4. Then largestl
5. Else largesti
6. If r<=heap size[B] and B[r]>B[largest]
7. Then largestr
8. If largest! =i
9. Then exchange B[i]B[largest]
10. Heapify(B,largest)

b) Build-Heap(B): goes through the remaining nodes
of the tree and runs Heapify on each one. The order in
which the nodes are processed guarantees that the sub
trees rooted at children at children of a node I are
heaps before Heapify is run on that node.
Build-Heap (B)

1. heap-size[B]length[A]
2. For i└length [B]/2┘down to 1.
3. Do Heapify(B,i). Running time of Build-

HEAP is O(n).

a. The HEAPSORT procedure (algorithm):
starts by using Buil-Heap to build a heap
on the i/p array B[1….n], where
n=length[B].

Algorithm: HEAPSORT(B):

1. Build-Heap (B)
2. For ilength [B] down to 2
3. Do exchange B[1]B[i]
4. heap-size [B]heap-size [B]-1.
5. Heapify[B,1]

2) Time Complexity Of Heap Sort[9]- 1. Creation of
Heap is the process in which a number of
comparisons takes place thereby taking logn time. 2.
Denoting depth in form of nodes(n):
20+21+22+…..2d-1=n(no. of nodes) Geometric
Progression: Sum=a(rn-1)/r-1 n=1(2d-1)/2-1 log
n=log 2d-1/1 log n = log 2d-log 1 d log22=log(n+1)
d=log(n+1)=>log n depth of a complete Binary
tree=log n for 1 element=> number of comparison
takes log n time therefore for n elements time taken
for comparisons is T(n)=O(nlogn). Time complexity
for heap sort in average as well as worst case lies the
same i.e T(n)=O(nlogn).

C. INSERTION SORT:
This algorithm considers the elements one at a time,
inserting each in its suitable place among those
already considered (keeping them sorted). Insertion
sort is an example of an incremental algorithm. It
builds the sorted sequence one element at a time.

1) Algorithm[11]:
We use a procedure INSERTION_SORT. It takes an
array A[1.. n] as parameter. The array A is sorted in
place: the numbers are rearranged within the array,
with at most a constant number outside the array at
any time. The algorithm for insertion sort is as
follows: INSERTION_SORT (A) 1. FOR j ← 2 TO
length[A] 2. DO key ← A[j] 3. {Put A[j] into the
sorted sequence A[1 . . j − 1]} 4. i ← j − 1 5. WHILE
i > 0 and A[i] > key 6. DO A[i +1] ← A[i] 7. i ← i − 1
8. A[i + 1] ← key

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 539

Figure 3 shows the process of insertion sorting

2) Time Complexity of Insertion Sort[10]

Since the running time of an algorithm on a particular
input is the number of steps executed, we must define
"step" independent of machine. We say that a
statement that takes ci steps to execute and executed n
times contributes ci*n to the total running time of the
algorithm. To compute the running time, T(n), we
sum the products of the cost and times column. That
is, the running time of the algorithm is the sum of
running times for each statement executed. So, we
have

T(n) = c1n + c2 (n − 1) + 0 (n − 1) + c4 (n − 1) + c5
Σ2 ≤ j ≤ n (tj)+ c6 Σ2 ≤ j ≤ n (tj − 1) + c7 Σ2 ≤ j ≤ n
(tj − 1)+ c8 (n − 1)-----Eq.1 In the above equation we
supposed that tj be the number of times the while-loop
(in line 5) is executed for that value of j. Note that the
value of j runs from 2 to (n − 1). We have
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n (
tj)+ c6 Σ2 ≤ j ≤ n (tj − 1) + c7 Σ2 ≤ j ≤ n (tj − 1) + c8
(n − 1) Eq.2

i. Best-Case Analysis[12]:
The best case occurs if the array is already sorted. For
each value of j = 2, 3, ..., n, we find that A[i] is less
than or equal to the key when i has its initial value of
(j − 1). In other words, when i = j −1, always find the
key A[i] upon the first time the WHILE loop is run.
Therefore, tj = 1 for j = 2, 3, ..., n and the best-case
running time can be computed using equation (2) as
follows:
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n
(1) + c6 Σ2 ≤ j ≤ n (1 − 1) + c7 Σ2 ≤ j ≤ n (1 − 1) + c8
(n − 1)
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 (n − 1) + c8
(n − 1)

T(n) = (c1 + c2 + c4 + c5 + c8) n + (c2 + c4 + c5 +
c8)
This running time can be expressed as an + b for
constants a and b that depend on the statement cost ci.
Therefore, T(n) it is a linear function of n. The main
concept here is that the while-loop in line 5 executed
only once for each j. This happens if given array A is
already sorted. T(n) = an + b = O(n) It is a linear
function of n.

ii. Worst-Case Analysis[13]:
The worst-case occurs if the array is sorted in reverse
order i.e., in decreasing order. In the reverse order, we
always find that A[i] is greater than the key in the
while-loop test. So, we must compare each element
A[j] with each element in the entire sorted subarray
A[1 .. j − 1] and so tj = j for j = 2, 3, ..., n.
Equivalently, we can say that since the while-loop
exits because i reaches to 0, there is one additional
test after (j − 1) tests. Therefore, tj = j for j = 2, 3, ...,
n and the worst-case running time can be computed
using equation (2) as follows:
T(n) = c1n + c2 (n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n (j
) + c6 Σ2 ≤ j ≤ n(j − 1) + c7 Σ2 ≤ j ≤ n(j − 1) + c8 (n −
1)
And using the summations, we have: T(n) = c1n + c2
(n − 1) + c4 (n − 1) + c5 Σ2 ≤ j ≤ n [n(n +1)/2 + 1] +
c6 Σ2 ≤ j ≤ n [n(n − 1)/2] + c7 Σ2 ≤ j ≤ n [n(n − 1)/2]
+ c8 (n − 1) T(n) = (c5/2 + c6/2 + c7/2) n2 + (c1 + c2
+ c4 + c5/2 − c6/2 − c7/2 + c8) n − (c2 + c4 + c5 +
c8)

This running time can be expressed as (an2 + bn + c)
for constants a, b, and c that again depends on the
statement costs ci. Therefore, T(n) is a quadratic
function of n. Here the main concept is that the worst-
case occurs, when line 5 executed j times for each j.
This can happens if array A starts out in reverse order
T(n) = an2 + bn + c = O(n2) It is a quadratic function
of n2.

D. MERGE SORT:

This algorithm is also based on Divide-and-Conquer
approach. Given a sequence of elements also called
keys c[1],….,c[n], the general idea is to imagine them
split into two sets c[1],….c[└n/2┘] and
c[└n/2┘+1],….,c[n].Each set is individually sorted
and the resulting sorted sequence are merged to
produce a single sorted sequence of n elements[9].

Algorithm [14][15]:The algorithm is divided into two
parts: the first part will be procedures MERGEPASS,

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 540

which is used to execute a single pass of the algorithm
and the second part will repeatedly apply
MERGEPASS until C is sorted.
Algorithm MERGEPASS(C,N,L,D): The N element
array A is composed of sorted sub arrays where each
sub array has L elements possibly the last sub array,
which may have fewer than L elements. The
procedure merges the pairs of sub arrays of C and
assigns them to the array D. Dividing n by 2*L, we
obtain the quotient Q, which tells the number of pairs
of L-element sorted sub arrays ; that is
Q=INTEGER(N/(2*L))

Figure 4 shows the process of merge sorting

1. Set Q= INTEGER(N/(2*L)), S:=2*L*Q(total no.

of elements in Q pairs of sub arrays, and R=N-
S(no. of remaining elements)

2. Merge the Q pairs of sub arrays.[repeat for
J=1,2,….Q:

a. Set LB(lower bound):=1+(2*J-2)*L.
b. Call MERGE(C, L, LB, A, L, LB, D, LB).

[end of loop.]
3. [only one sub array left?] If R<=L, then: Repeat

for j=1,2,….R: Set D(S+J):=C(S+J). [end of loop.]

Else: call MERGE(C,L,S+1,C,R,L+S+1,B,S+1).
[end of if structure.]

4. return.
Algorithm MERGESORT(C,N) This algorithm sorts
the N-element array C using an auxiliary array D.

1. set L:=1.[initialize the no. of elements in the
sub arrays.]

2. Repeat steps 3 to 6 while L<N:
3. 3.call MERGEPASS(C,N,L,D).
4. 4.call MERGEPASS(D,N,2*L,A).
5. set L:=4*L. [end of step 2 loop.]
6. exit.

2) Time Complexity Of Merge Sort[16][17]:
The recurrence relation for the merge sort is as
follows[11]:
2T(n/2)+cn When n=power of 2,n=2k,
solving the above recurrence relation by successive
substitution we get: T(n)=2(2T(n/4)+cn/2)+cn =
4T(n/4)+2cn = 4(2T(n/8)+cn/4)+2cn - - - =
2kT(1)+kcn = an+cnlog n 2k<n<2k+1 T(n)<=T(2k+1)
Therefore, T(n)=O(nlogn) Time complexity for heap
sort in average as well as worst case lies the same i.e
T(n)=O(nlogn).

III. EXPERIMENT AND RESULT TO

MEASURE THE PERFORMANCE OF
ALGORITHMS

In this experiment we have used C# in which the data
set contains random numbers. The initial range of data
set starts from 50 to 10000 elements with increment
of 100 elements and later the size of elements
increased and reached to 30000 with the interval of
1000 elements. Table1 shows this data set and clock
tick measurement and the table 2 shows the total time
taken by the algorithm in seconds to sort the elements.
The table 3 shows the comparative study of their
characteristics, time as well as space complexities.

TABLE 1: shows the number of clock ticks taken by the three algorithms for sorting

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 541

TABLE 2: shows time taken(in seconds) by the three algorithms to sort the array

TABLE 3: shows comparison of the three sorting techniques on various parameters

Figure 5: Graph comparing all the three algorithms.

IV. CONCLUSION

From the above analysis it can be said that in a list of
random numbers from 10000 to 30000, insertion sort
takes more time to sort as compare to heap, quick and
merge sorting techniques. If we take worst case
complexity of all the four sorting techniques then
insertion sort and quick sort technique gives the result
of the order of N^2, but here if one needs to sort a list

in this range then quick sorting technique will be
more helpful than the other techniques.

REFERENCES:

1. Data Structures by Seymour Lipschutz and G A
Vijayalakshmi Pai (Tata McGraw Hill
companies), Indian adapted edition-2006,7 west
patel nagar,New Delhi-110063

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018 Page: 541

2. Introduction to Algorithms by Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest,
fifth Indian printing (Prentice Hall of India private
limited), New Delhi-110001

3. Computer Algorithms by Ellis Horowitz, Sartaj
Sahni, Sanguthevar Rajasekaran, Galgotia
publications,5 Ansari road, Daryaganj, New
Delhi-110002

4. C.A.R. Hoare, Quicksort, Computer Journal, Vol.
5, 1, 10-15 (1962)

5. P. Hennequin, Combinatorial analysis of Quick-
sort algorithm, RAIRO: Theoretical Informatics
and Applications, 23 (1988), pp. 317–333

6. Lecture Notes on Design & Analysis of
Algorithms G P Raja Sekhar Department of
Mathematics I I T Kharagpur

7. The external Heapsort by L M Wegner, J I
Teuhola IEEE Transactions on Software
Engineering (1989) Volume: 15, Issue: 7, Pages:
917-925 ISSN: 00985589 DOI: 10.1109/32.29490

8. Heapsort by J. W. J. Williams. Communications
of the ACM, Vol. 7, No. 6, pp. 347-348 (June
1964) Heapsort algorithm

9. Worst-case analysis of a generalized heapsort
algorithm A. Paulik Institut für Numerische und
Angewandte Mathematik, Lotzestrasse 16–18, D-
3400 Göttingen, FRG, (science direct.com)

10. Alexandros Agapitos and Simon M. Lucas,
“Evolving Efficient Recursive Sorting
Algorithms”, 2006 IEEE Congress on
Evolutionary Computation Sheraton Vancouver
Wall Centre Hotel, Vancouver, BC, Canada July
16- 21, 2006

11. Knuth D. (1997) “The Art of Computer
Programming, Volume 3: Sorting and Searching’’,
Third Edition. Addison-Wesley, 1997. ISBN 0-
201-89685-0. pp. 138–141, of Section 5.2.3:
Sorting by Selection

12. Let Us C by Yashvant Kanethkar, 8th edition(BPB
publications).b-14 Connaught place, New Delhi-
110001

13. MERRITT S. M. (1985), “An inverted taxonomy
of Sorting Algorithms. Programming Techniques
and Data Structures”, Communications of ACM,
Vol. 28, Number 1, ACM

14. G. Franceschini. An in-place sorting algorithm
performing O(n log n) comparisons and O(n) data

moves. In Proc. 44th IEEE Ann. Symp. on
Foundations of Computer Science, pages 242–
250, 2003

15. Parallel merge sort by Richard Cole 27th Annual
Symposium on Foundations of Computer Science
sfcs 1986 (1986) Volume: 17, Issue: 4, Publisher:
Ieee, Pages: 770-785 ISSN: 02725428 ISBN:
0818607408 DOI: 10.1109/SFCS.1986.41

16. Merge sort:- Merge sort algorithm, C.
BronTechnological Univ., Eindhoven, The
Netherlands, Communications of the ACM
Volume 15 Issue 5, May 1972, ACM New York,
NY, USA

17. Optimal stable merging by A. Symvonis. The
Computer Journal, Vol. 38, No. 8 (1995). In-place
and stable merge sort

