
 
 

 
 

 

 

 

 

 

 

International Journal of Trend in Scientific Research and Development (IJTSRD) 
   International Open Access Journal | www.ijtsrd.com 

 ISSN No: 2456 - 6470 | Volume - 3 | Issue – 1 | Nov – Dec 2018 

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018    Page: 1318 

 
  

 

ROI Determination and Compression in 

MRI Using Gradient Method with CUDA
 

Mahmut Ünver 
Department of Computer Programming, Kırıkkale University, Kırıkkale, Turkey 

 
 

ABSTRACT  

Due to the large use of MRI in hospitals, large storage 

areas are needed to store these images. Also, if you 

want to access these images over the system 

repeatedly, a large bandwidth is required. To solve 

this problem, it will be necessary to compress and 

store the medical imaging system quickly and without 

disruption. It has been seen that in the studies made on 

MRIs, the non-used regions (NON-ROI) occupy a 

large space and the image size can be reduced 

significantly when the unnecessary area in the image 

is cleaned. In this method developed with CUDA, the 

region of interest (ROI) in the MRI is detected by 

sending a 3x3 Kirsch filter matrix to the CUDA cores 

and the NON-ROI region is extracted from the image 

with CUDA. These operations are first executed by 

the serial application on CPU, then by a parallel 

application on GPU. As a result, the application 

running on the GPU produced 34 times faster results 

than the application on the CPU. When images are 

compressed with this new improved method, it takes 

up 89% less than the original image size and 15% less 

than the original compressed image. 

 

Key Words: Medical Image, Parallel Programming, 

Medical Image Processing, CUDA, ROI. 

 

1. INTRODUCTION 

1.1. Structure of CUDA  

CPU generally remains incapable in terms of 

architecture to work on image processing and 

calculate it faster. In that case, GPU technology 

designed its architecture on image processing has 

developed. Increasing computational capabilities of 

GPUs have triggered the implementation of GPU 

work in areas such as image processing, linear 

algebra, statistics, and 3D modeling [1]. A parallel 

computing architecture called Compute Unified  

 

 

Device Architecture (CUDA) that increase computing  

performance significantly with NVIDIA's GPU 

(Graphics Processing Unit) capacity. Thanks to the 

GPU with CUDA architecture, scientists, software 

developers and researchers are doing research in 

computational biology and chemistry, image and 

video processing, seismic analysis and ray tracing, 

medical image processing. [2]. The primary version 

number and the secondary version number express the 

GPU calculation capability. Products with the same 

primary version numbers are in the same physical 

core architecture. Devices with primary version 

number 1 have Tesla architecture, devices 2 have 

Fermi architecture, devices 3 have Kepler 

architecture, and 5 have Maxwell architecture. The 

secondary version number changes as these architects 

evolve [3]. Tesla architecture developed in 2007 has a 

clear hierarchy of Tesla cards primarily in 

texture/processor clusters. These clusters can be 

scalable, can be a single, eight or more. The goal is to 

have a number of clusters that can be expanded easily 

[4]. In 2010, NVIDIA engineers started working to 

design a new GPU architecture. This architecture 

defines how a GPU is connected to each other and 

how they work [5]. The Kepler architecture, released 

by NVIDIA in 2012, offers more processing 

performance and efficiency with the new SM 

(Streaming Multiprocessor) design, which allows 

larger areas to be allocated to process cores instead of 

logic control [6]. GPUs powered by Maxwell 

architecture released in 2014 are GPUs that can render 

for the first time an indirect light dynamically using 

the new VXGI (Voxel Global Illumination) 

technology. Since the light interacts more realistically 

in the playing environment, the scenes are closer and 

more believable than the real life [7].  

 

http://www.ijtsrd.com/
http://www.ijtsrd.com/


International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018    Page: 1319 

Medical Imaging Processing and Medical Imaging 

Processing with CUDA were performed in the 

following places where the literature search resulted: 

➢ The work in [8, 9] is CUDA has implemented 

simple convolution, and FFT (Fast Fourier 

Transform) based convolution processes using 

CUFFT library and presented analyzes. 

 

➢ The work in [10] is experiences on CUDA use are 

shared. The performance values achieved with 

CUDA in medical underground image processing 

studies are compared with the CPU 

implementation of the same studies. 

 

➢ The work in [11] is With CUDA C; motion 

tracking application has been made. The practice 

has been tested on different GPUs, and it has been 

observed that even small differences between 

GPUs can cause significant performance 

differences between applications. 

 

➢ The work in [12] is by applying medical image 

segmentation algorithms using CUDA, the 

performances of the GPU and CPU were 

measured by comparing them with other 

researchers, explaining the advantages of CUDA 

and how it was designed. 

 

➢ The work in [13] is deformation image recording 

algorithm was applied on 3D lung tomography 

image with CUDA. Whatever the size of the 

dataset, the speed was 55 times faster than the 

CPU code, and the best results were obtained in 

this respect. 

 

➢ The work in [14] is an integrated archiving method 

based on ROI (Interest), and OCR (Automatic 

Character Recognition) has been developed in 

medical images. In this method, the image is 

divided into ROI be NON-ROI regions. The ROI 

region is compressed with the lossless 

compression algorithm JPEG-LS, while the OCR 

and Huffman algorithms are used in the NON-ROI 

region. With this method, a compression ratio of 

92.12% to 97.84% was obtained for the NON-ROI 

region of the image. In addition, this developed 

method has achieved an 83.30% success rate for 

the NON-ROI portion of the view according to the 

best approach in the literature. 

 

➢ The work in [15] is an efficient middle-tier 

platform has been developed using modern 

technologies. Medical image data is compressed 

using Hadoop/Map Reduce and stored using 

MongoDB. In study, the developed service-based 

platform is available to all HIMS for medical 

imaging archives without changing the DICOM 

standard. The developed fast and efficient search 

engine provides access to the medical image that 

the end user searched for safely. 

 

CUDA programming consists of the term Kernel, 

Grid, Block, and Thread.  

 

Kernel: In CUDA programming, the part of a code 

that will work on the GPU is called the "kernel". The 

GPU creates a Kernel copy for each element of the 

dataset. These Kernel copies are called "thread"[16].  

 

Grid: The Grid is the structure that the Blocks come 

together to create. Each Kernel call creates a Grid. 

Grids can be 1D, 2D or 3D. These dimensions are 

expressed as "gridDim.x", "gridDim.y" and 

"gridDim.z". "gridDim" refers to the number of 

blocks in the grid [16]. 

 

Block: The block structure consists of threads that 

have the ability to operate in parallel. They can be 1D, 

2D or 3D. They are grouped in the grid. Each block 

has its own unique index in this 3D within the grid. 

These indices are "blockIdx.x", "blockIdx.y" and 

"blockIdx.z". The threads in it are dimensioned 

according to the number of rows and columns, and 

these dimensions are expressed as "blockDim.x", 

"blockDim.y", "blockDim.z". "BlockDim" means the 

thread size in the local block [16]. 

 

Thread: Thread is the smallest unit in the CUDA 

architecture. Blocks can be 1D, 2D or 3D. They run 

the same piece of code in parallel with each other. The 

threads are grouped in blocks. Threads in different 

blocks cannot work together [16]. 

 

1.2. Archiving of Medical Images  

The archiving of medical images has an essential 

issue in medical documentation. Digital archiving, 

especially in the age of information, is more of an 

issue on the agenda. This is because the cost of film 

for printing medical images on films and the time 

required for archive archiving to be reused is a 

disadvantage of physical archiving. As image 

processing systems in the health field evolve, how 

digital images are stored together with patient 

information and how to access these images together 

http://www.ijtsrd.com/


International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018    Page: 1320 

with the image data is a matter of emphasis on the 

digital system. Because of certain standard works, the 

DICOM dataset standard has emerged [17]. 

 

1.3. Standard of DICOM  

It was developed to find solutions to questions about 

how to use the archived medical image. The DICOM 

(Digital Imaging and Communications) file structure 

is the connotation of a database. As in the databases, 

both text data can be written in the file, and raw image 

data can be added. In this standard, which stores all 

data in a single file, there are labels to avoid confusion 

when retrieving the data [17].  

 

2. DETAILS EXPERIMENTAL 

2.1. Materials and Procedures 

When examined in Figure1, the black area outside the 

region of interest (ROI), that is, the NON-ROI region, 

which is to be considered on the MRI, occupies a 

large area on the image. In this study, the ROI region 

used on the image will be determined by CUDA. The 

resulting image will be compressed and compared 

with the original image. 

 

 
Figure 1: Brain MRI 

 

2.2 ROI Determination 

 
(a)       (b)       (c)       (d) 

Figure 2: Application of different filters to brain MRI (a) original image (b) Sobel Filter Matrix (c) 

Prewitt Filter Matrix (d) Kirsch Filter Matrix.

http://www.ijtsrd.com/


International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018    Page: 1321 

When the ROI region is set on the MRI, for each 

pixel; 

1. Gradient-based on the derivative is calculated. 

a. For best results, this process should select the 

most suitable Gradient matrix. 
 

2. Calculated Gradient value is compared to the 

threshold value 

a. If it is greater than the specified threshold, the 

pixel is marked as the edge point. 

b. If not, the next pixel is passed. 
 

When Sobel, Prewitt and Kirsch Filter Matrices are 

applied separately, and gradient process is applied, 

when the threshold value is selected by setting the 

threshold value 255, the Sobel and Prewitt matrices 

can detect the edge regions, but they are not sufficient 

to determine the ROI region in full sense as shown in 

Figure 2. The Kirsch matrix has succeeded in locating 

the ROI region at high resolution, even though it finds 

it with thick edges (expressing more than one pixel at 

the edge) in different types of MRI. 
 

2.2. Extracting ROI in MRI 

Once the ROI region has been determined, the 

extreme coordinates of the ROI region are determined 

by traversing the image upside down, right to left, up 

and down, and left to right, and the image frame is 

collapsed according to these coordinates. 

 
(a) (b) 

Figure 3: (a) Original image (b) ROI region 

detected and frame-collapsed image. 
 

3. RESULTS AND DISCUSSION 

Table 1 shows the data sizes of 6 MRI shown in 

Figure 3.2 after the original data and the ROI image 

generated by the application and the mapping method 

after mapping are separately compressed by a 

compression algorithm of the resulting data. The size 

of the ROI image is 40% less than the original image 

size, and the size of the compressed ROI image is on 

average 89% less than the original image size. Also, 

the compressed data size of the ROI image is on 

average 15% less than the compressed size of the 

original image. 
 

Table1. Compressed dimensions of original and ROI processing data 

MRI Number Original MRI Size ROI Size Compressed Original MRI Size Compressed ROI Size 

1 256 KB 173KB 41 KB 36KB 

2 256 KB 178KB 36 KB 30KB 

3 256 KB 174KB 36KB 31KB 

4 256 KB 174KB 43 KB 38KB 

5 256 KB 138KB 35KB 29KB 

6 256 KB 79KB 21KB 17KB 

Average 256 KB 153KB 35KB 30KB 

 

Table 2 shows the runtime of the serial and parallel codes running on CPU and CUDA and GPU by mapping 

ROI image on 6 MRI shown in Figure 3.2 and mapping method operations afterward. The parallel GPU code 

written in CUDA has achieved significant success in each image according to the serial code written on the 

CPU and performed 34 times faster processing in average. 

 

Table 2: Runtime comparison of CUDA-encoded GPU code with serial code running on CPU 

MRI Serial CPU Code Runtime CUDA GPU Code Runtime 

1 325 ms 9 ms 

2 315 ms 10 ms 

3 314 ms 12 ms 

4 318 ms 9 ms 

5 354 ms 13 ms 

6 436 ms 8 ms 

Average 343 ms 10 ms 

http://www.ijtsrd.com/


International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018    Page: 1322 

CONCLUSIONS 

With this study, the methods have been used to store 

MRIs with less memory space in the digital system 

and to achieve these images faster. It is thought that it 

would be more logical to hide only the ROI field 

because the area of the (NON-ROI) region outside the 

ROI of the MRI is significantly larger. From there, the 

ROI region was detected and removed from the 

image. The size of the compressed image formed as a 

result of this method is about 12% of the original size. 

An area savings of 88% for each MRI is a significant 

data space savings when it is thought that there are 

millions of MRIs stored in hospitals. 

 

Storing the archive in the archive system is a second 

possibility. When the resulting image is compressed, 

the resulting data size is about 85% of the size of the 

original image when compressed. In this case, on 

average, an area saving of 15% is achieved for each 

MRI. 

 

The application has been run on both CPU and CUDA 

separately on GPU and run times have been 

examined. According to this; the parallel application 

written in CUDA was seen to run 34 times faster than 

the application written on the CPU. This study and 

literature studies show that GPU systems are fast (10 - 

55 times) faster than CPU performance in image 

processing area. The CUDA-coded parallel GPU 

application used in this study achieved a result above 

the performance averages of the GPU applications in 

the literature. 

 

ACKNOWLEDGMENTS  

This work is supported by the Kırıkkale University 

Department of Scientific Research Projects 

(2016/110). 

 

REFERENCES 

1. Yıldız, E., High-Performance Image Processing 

with NVIDIA CUDA, Master Thesis, Istanbul 

University Institute of Science and Technology, 

İstanbul, 2011. 

2. CUDA, http://www.nvidia.com.tr/object/cuda-

parallel-compu ting-tr.html. [Accessed 

09.12.2017]. 

3. Sözen, N., CUDA Architecture, 

http://nezihesozen. github.io/mydoc/cuda6.html. 

[Accessed 09.12.2017]. 

4. Gahagan M., Tesla Architecture, 

https://cseweb.ucsd.edu/class 

es/fa12/cse141/pdf/09/GPU_Gahagan_FA12.pdf. 

[Accessed 10.12.2017]. 

5. Baskaran S., Fermi Architecture, 

https://www.linkedin.com/pulse/nvidia-fermi-vs-

kepler-maxwell-pascal-gpus-sangeetha-baskaran. 

[Accessed 10.12.2017]. 

6. Kepler Architecture, 

http://www.nvidia.com.tr/object/nvidia-kepler-

tr.html. [Accessed 10.12.2017]. 

7. Maxwell Achitecture, 

http://www.nvidia.com.tr/object/maxwel-gpu-

architecture-tr.html. [Accessed 10.12.2017]. 

8. Podlozhnyuk, V., Image Convolution with CUDA, 

http://developer.download.nvidia.com/compute/cu

da/1.1- 

Beta/x86_64_website/projects/convolutionSepara

ble/doc/convolutionSeparable.pdf. [Accessed 

12.12.2017]. 

9. Podlozhnyuk, V., FFT based 2D Convolution, 

http://developer.download.nvidia.com/compute/cu

da/2_2/sdk/website/projects/convolutionFFT2D/d

oc/convolutionFFT2D.pdf, [Accessed 

12.10.2017]. 

10. Garland, M., Le Grand, S., Nickolls, J., Anderson, 

J., Hardwick, J., Morton, S., Phillips, E., Zhang, 

Y. and Volkov, V., Parallel Computing 

Experiences with CUDA, Micro, IEEE, 28(4), pp. 

13-27, 2008. 

 

11. Huang, J., Ponce, S.P., Park, S.I, Yong, C. and 

Querk, F., GPU Accelerated Computation for 

Robust Motion Tracking Using the CUDA 

Framework, 5th International Conference on 

Visual Information Engineering, pp. 437-442, 

2008. 

12. Pan L., Gu L., and Jianrong X., Implementation of 

Medical Image Segmentation in CUDA, 

International Conference on Information 

Technology and Applications in Biomedicine, 

ITAB, ISBN: 978-1-4244-2254-8, 2008. 

13. Owens, J., D., Ozcelik, P.M., Xia, J. and Samant, 

S.S., Implementation of Medical Image 

Segmentation in CUDA, International Conference 

on Computational Sciences and Its Applications, 

ICCSA, ISBN: 978-0-7695-3243-1, 2008. 

14. Erguzen, A., Erdal, E., Medical Image Archiving 

System Implementation with Lossless Region of 

http://www.ijtsrd.com/


International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018    Page: 1323 

Interest and Optical Character Recognition, 

Journal of Medical Imaging and Health 

Informatics, Volume 7, Number 6, s 1246-

1252(7), 2017. 

15. Erguzen, A., Erdal, E., An Efficient Middle Layer 

Platform for Medical Imaging Archives, Journal 

of Healthcare Engineering, Volume 2018,12 

pages, 2018, doi:10.1155/2018/3984061. 

16. Sözen, N., Grid Block Thread Structure, 

http://nezihesozen.github.io/mydoc/cuda2.html. 

[Accessed 20.12.2017]. 

17. Ulaş, M., Boyacı, A., Akademik Bilişim’07 - IX. 

Akademik Bilişim Konferansı Bildirileri, 

Dumlupınar University, Kütahya, pp.69-74, 2007 

 

http://www.ijtsrd.com/

