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ABSTRACT 
In this paper, the robust stabilization for a class of 
uncertain nonlinear systems is investigated. Based on 
the Lyapunov-like approach with differential 
inequalities, a simple linear static control is offered to 
realize the global exponential stability of such 
uncertain nonlinear systems. Meanwhile, the 
guaranteed exponential convergence rate can be 
correctly estimated. Finally, some numerical 
simulations are given to demonstrate the feasibility 
and effectiveness of the obtained results.
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1. INTRODUCTION 
Control design with implementation 
nonlinear dynamical systems is one of the most 
challenging areas in systems and control theory. 
well known that uncertainties and nonlinearities
appear in various physical systems and a
systems are essentially nonlinear in nature.
control has been active for many years, and many 
results concerning with nonlinear control have been 
proposed. However, it is still difficult to implement 
nonlinear controllers for practical systems.
 
Recently, there have several well
techniques and methodologies for analyzing 
nonlinear systems, such as back stepping approach
fuzzy adaptive control approach, 
linearization, H-infinity control approach, 
mode control methodology, LMI approach, 
perturbation method, Lyapunov approach, 
equation approach, center manifold theorem
sliding mode control, adaptive fuzzy-neural
and others; see, for example, [1-8] and the references 
therein. 
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In this paper, the stabilizability for a class of uncertain 
nonlinear systems will been considered
Lyapunoe-like approach with differential inequality, a 
linear static control will be established
global exponential stability of such 
Moreover, the guaranteed exponential convergence 
rate can be correctly calculate
simulations will also be provided to illustr
of the main results. 
 
The layout of the rest of this paper is organized as 
follows. The problem formulation, main result, and 
controller design are presented in Section 2. 
Section 3, numerical simulations 
realization are given to illustrate the effectiveness of 
the developed results. Finally,
drawn in Section 4. In what follows, 
n-dimensional real space, x
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value of a real number a, and 
of the matrix A. 
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[ ]Txxxx 40302010  is the initial value, 
{ }15,,2,1, L∈∀∆ iai  indicate uncertain parameters of the 

system. The hyper-chaotic Pan system
case of systems (1) with ( ) ,0=tu  

285 =∆a , 198 =∆−=∆ aa , 
3

8
12

−=∆a , 14 =∆a

{ }15,13,11,10,7,6,4,3,0 ∈∀=∆ iai . 
 
The global exponential stabilization
exponential convergence rate of the system (1) are 
defined as follows. 
Definition 1. 
The uncertain systems (1) are said to be 
exponentially stable if there exist a control 
positive number α  satisfying 

( ) ( ) 0,0 ≥∀⋅≤ − textx tα . 

In this case, the positive number α  
exponential convergence rate. 
 
The aim of this paper is to find a simple linear 
control such that the global exponential stabili
of uncertain systems (1) can be guaranteed. 
Meanwhile, an estimate of the exponential 
convergence rate of such stable systems is also 
explored. 
 
Throughout this paper, we make th
assumption: 
(A1) There exist constants ia  and 

{ }15,,2,1, L∈∀≤∆≤ iaaa iii , with b

{ }15,10,0 ∈∀> iai  and { }.12,1,0 ∈∀< iai  

 
Now we present the main result for 
exponential stabilization of uncertain systems (1) via 
Lyapunov-like theorem with the differential and 
integral inequalities. 
Theorem 1 
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globally exponential stabilization under the 
static control  
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As a consequence, we conclude that 
( ) ( ) .0,0 ≥∀≤ − txetx tα  

This completes the proof. □ 
 
3. NUMERICAL SIMULATIONS 
Consider the uncertain systems (1) with 
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(A1) is evidently satisfied. With the choice 
in (2), it can be obtained that 

[ ] [ ] .32111 4221
TT xxuuu −−==   (7) 

 
As a consequence, by Theorem 1, we conclude that 
the uncertain systems (1) with (6) 
exponentially stable under the linear static 
(7). Besides, from (3), the guaranteed exponential 
convergence rate is given by 1=α . The typical s
trajectories of the uncontrolled system and the 
feedback-controlled system are depicted in Fig
and Figure 2, respectively. In addition, 
signals and the electronic circuit to realize such a 
control law are depicted in Figure 3 
respectively. 
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4. CONCLUSION 
In this paper, the robust stabilization for a class of 
uncertain nonlinear systems has been explored
on the Lyapunov-like approach
inequalities, a simple linear 
presented to realize the global exponential stability of 
such uncertain nonlinear systems. 
guaranteed exponential convergence rate can be 
correctly calculated. Finally, some numerical 
simulations have been offered 
feasibility and effectiveness of the obtained results.
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Figure 1: Typical state trajectories of the system (1) 
with (6) and .0=u  

 

Figure 2: Typical state trajectories of the feedback
controlled system of (1) with (6) and (7)
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