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ABSTRACT

In this paper, the concept of practical stabilization for 
nonlinear systems is introduced and the practical 
stabilization of uncertain generalized Duffing
control systems with unknown actuator nonlinearity is 
explored. Based on the time-domain approach 
differential inequalities, a single control is presented 
such that the practical stabilization for a class of 
uncertain generalized Duffing-Holmes systems with 
unknown actuator nonlinearity can be achieved. 
Moreover, both of the guaranteed exponential
convergence rate and convergence radius can be 
correctly calculated Finally, some numerical 
simulations are given to demonstrate the feasibility and 
effectiveness of the obtained results. 
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1.  INTRODUCTION 

Chaotic dynamic systems have been extensively 
investigated in past decades; see, for instance, [1
and the references therein. Very often, chaos in man
dynamic systems is an origin of instability and an 
origin of the generation of oscillation. Generally 
speaking, the robust stabilization of uncertain dynamic 
systems with a single controller is in general not as 
simple as that with multiple controllers. 
decades, various methodologies in robust control of 
chaotic system have been offered, such as   control 
approach, adaptive control approach, variable structure 
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control approach, backstepping control approach, 
adaptive sliding mode control approach, and others. 

In this paper, the concept of practical stabilizability for 
uncertain dynamic systems is introduced and the 
practical stabilizability of uncertain generalized 

Holmes control systems with unknown 
actuator nonlinearity will be studied. Using the time-
domain approach with differential inequality, a single 
control will be designed such that the practical 
stabilization can be achieved for a class of uncertain 

Holmes systems with unknown 
ly the convergence radius 

and guaranteed exponential convergence rate can be 
specified, but also the unknown actuator 

nonlinearity and mixed uncertainties can be 
simultaneously overcome by the proposed single 
control. Several numerical simulations will also be 
provided to illustrate the use of the main results. 

organized as follows. The problem 
are presented in Section 2. 

simulations are given in Section 3 to 
veness of the developed results. 

Finally, some conclusions are drawn in Section 4. 
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2.  PROBLEM FORMULATION AND MAIN 
RESULTS 

Nomenclature 

n    the n-dimensional real space 

a   the modulus of a complex number a 

I   the unit matrix 

TA   the transport of the matrix A  

x   the Euclidean norm of the vector nx   

)(min P  the minimum eigenvalue of the matrix P with 

real eigenvalues 

)(A   the spectrum of the matrix A 

0P   the matrix P is a symmetric positive definite 
matrix 

Before presenting the problem formulation, let us 
introduce a lemma which will be used in the proof of 
the main theorem. 

Lemma 1 

If a continuously differentiable real function  ts  

satisfies the inequality 

    0,2  ttsats  , 
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This completes the proof.  □ 

In this paper, we consider the following uncertain 
generalized Duffing-Holmes control systems with 
uncertain actuator nonlinearity described as 

21 xx  , (1a) 

   
  .0,

,cos 2115

5
14

3
1322112






tu

xxftwq

xqxqxqxqx





 (1b) 

where   12
21

 Txxx  is the state vector, u  is the 
input,  21, xxf  represents the mixed uncertainties 
(unmodeled dynamics, parameter mismatchings, 
external excitations, and disturbance), and  u  
represents the uncertain actuator nonlinearity. For the 
existence of the solutions of (1), we assume that the 
unknown terms  21, xxf  and  u  are all continuous 
functions. It is well known that the system (1) without 
any uncertainties (i.e.,     0, 21  uxxf  ) displays 
chaotic behavior for certain values of the parameters 
[1]. In this paper, the concept of practical stabilization 
will be introduced. Motivated by time-domain approach 
with differential inequality, a suitable control strategy 
will be  established. Our goal is to design a single 
control such that the practical stabilization for a class of 
uncertain nonlinear systems of (1) can be achieved. 

Throughout this paper, the following assumption is 
made: 

(A1) There exist continuous function   0, 21 xxf  and 

positive number 1r  such that, for all arguments, 

   2121 ,, xxfxxf  , 

  2
1uruu   . 
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Remark 1 

Generally speaking, if the uncertain actuator 
nonlinearity satisfies 

   uuruuur ,2
2

2
1  , 

we often ascribe 2r  as the gain border and 1r  as the gain 

reduction endurance. Thus, we know 2r  from (A1); 

see Figure 1. 

A precise definition of the practical stabilization is 
given as follows, which will be used in subsequent 
main results. 

Definition 1 

The uncertain system (1) is said to realize the practical 
stabilization, provided that, for any 0  and 0 , 
there exist a control   ,:u  such that the state 

trajectory satisfies 

  ,0,   tetx t    

for some 0 . In this case, the positive number   is 
called the convergence radius and the positive number 
  is called the exponential convergence rate. Namely, 
the practical stabilization means that the states of 
system (1) can converge to the equilibrium point at 

0x , with any pre-specified convergence radius and 
exponential convergence rate. Obviously, a control 
system, having small convergence radius and large 
exponential convergence rate, has better steady-state 
response and transient response. 

Now we present the main result for the practical 
stabilization of uncertain systems (1) via time-domain 
approach with differential inequalities. 

Theorem 1 

The uncertain systems (1) with (A1) realize the 
practical stabilization under the following control  

     2213 xpxptrtu  , (2) 
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following Lyapunov equation 
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with 0 . In this case, the guaranteed convergence 
radius and exponential convergence rate are   and  , 
respectively. 

Proof. From (1), the state equation can be represented 
as 
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has    1  A . This implies IA   is Hurwitz and 

the Lyapunov equation of (5) has the unique posive 
definite solution P. Let  

       tPxtxtxV T . (6) 

The time derivative of   txV  along the trajectories of 

the system (1) with (2)-(6) is given by 
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Thus, from Lemma 1, (6), and (7), it can be readily 
obtained that 
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This completes the proof.    □ 

3.  NUMERICAL SIMULATIONS 

Consider the following uncertain generalized Duffing-
Holmes control systems with unknown actuator 
nonlinearity described as 

21 xx  , (8a) 
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5
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where 

11 q , 25.02 q , 13 q , 04 q , 3.05 q , 11 w , 

    32
121 ,, ucubuxaxxf   , 

.0,31,11  cba  

Our objective, in this example, is to design a feedback 
control such that the uncertain systems (8) realize the 
practical stabilization with the exponential convergence 
rate 3  and the convergence radius 1.0 . The 

condition (A1) is clearly satisfied if we let   2
121, xxxf  , 

11 r . From (5) with 3 , we have  
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From (3) with 1.0 , one has 

   
  015.05.55.26

:
21

2




xxth

th
tr . Finally, the desired 

control, given by (2), can now be calculated as 

      21 5.55.26 xxtrtu  . (9) 

Consequently, by Theorem 1, we conclude that system 
(8) with the control (9) is practically stable, with the 
exponential convergence rate 3  and the guaranteed 
convergence radius 1.0 . The typical state trajectories 
of uncontrolled systems and controlled systems are 
depicted in Figure 2 and Figure 3, respectively. 
Besides, the time response of the control signal is 
depicted in Figure 4. From the foregoing simulations 
results, it is seen that the uncertain dynamic systems of 
(8) achieves the practical stabilization under the control 
law of (9). 

4.  CONCLUSION 

In this paper, the concept of practical stabilization for 
nonlinear systems has been introduced and the practical 
stabilization of uncertain generalized Duffing-Holmes 
control systems with unknown actuator nonlinearity has 
been studied. Based on the time-domain approach with 
differential inequalities, a single control has been 
presented such that the practical stabilization for a class 
of uncertain generalized Duffing-Holmes systems with 
unknown actuator nonlinearity can be achieved. Not 
only the unknown actuator nonlinearity and mixed 
uncertainties can be simultaneously overcome by the 
proposed control, but also the convergence radius and 
guaranteed exponential convergence rate can be 
arbitrarily pre-specified. Finally, some numerical 
simulations have been offered to show the feasibility 
and effectiveness of the obtained results. 
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Figure 1: Uncertain actuator nonlinearity. 

 

 

Figure 2: Typical state trajectories of the uncontrolled 
system of (8). 

 

Figure 3: Typical state trajectories of the feedback-
controlled system of (8) with (9). 
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