International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470

www.ijtsrd.com

Clustered Genetic Algorithm to solve Multidimensional Knapsack Problem

Dr. Prabha Shreeraj Nair

Dean Research

Tulsiramji Gayakwade Patil College of Engineering and Technology, Nagpur

ABSTRACT

Genetic Algorithm (GA) has emerged as a powerful tool to discover optimal for multidimensional (MDKP). Multidimensional knapsack problem knapsack problem has recognized as NP-hard problem whose applications in many areas like project selection, capital budgeting, loading problems, cutting stock etc. Attempts has made to develop cluster genetic algorithm (CGA) by mean of modified selection and modified crossover operators of GA. Clustered genetic algorithm consist of (1) fuzzy roulette wheel selection for individual selection to form the mating pool (2) A different kind of crossover operator which employ hierarchical clustering method to form two clusters from individuals of mating pool. CGA performance has examined against GA with respect to 30 benchmark problems for multidimensional knapsack. Experimental results show that CGA has significant improvement over GA in relation to discover optimal and CPU running time. The data for **MDKP** is available set at http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files/mknap2.txt

Keywords: Multidimensional knapsack problem, Genetic algo-rithm, Fitness function, Crossover, Mutation

1 INTRODUCTION

Multidimensional knapsack problem is one of the famous problem in applied mathematics belongs to NP- hard combi-natorial optimization [1]. This problem modeling has applied in several project selection and capital budgeting areas [2-4]. Meirier developed more mechanisms from real word practice to combine models of capital budgeting with novels, and practically applicable technique for evaluation of project [5]. They developed scenario dependent capital budgeting model that have MDKP as a subproblem associated with constraint of generalized

upper bound (GUB). Capital budgeting emerged as key challenge for not for profits multihospital healthcare units in United States. D.N. Kleinmuntz and C.E. Kleinmuntz developed a framework for capital budeting which used MDKP formulations [6]. MDKP have been employed to model prob-lems like investment policy in tourism area of developing country [7], database allocation and processor allocation in distributed computing environments [8], groceries delivery in vehicles with multiple compartments [9], cutting stock [10], loading problems [11] and approval voting [12]. Currently, MDKP has been applied in modeling of daily management of remote satellite like SPOT, which consisted in deciding each day what photographs will be attempted the next day [13].

Multidimensional knapsack problem is described by n objects and m knapsacks. Each knapsack has a capacity d_j (j = 1; 2; 3:::m). A number of binary variables x_i (i = 1; 2; 3::n) are used, that is set to 1 if ith object is chosen to inset in knapsacks otherwise it is set to 0. Each object has a profit value p_i (i = 1; 2; 3::n) and a weight w_{ij} corresponding to knapsacks. Thus mathematically this optimization problem can be modeled as :

$$\begin{array}{c} \underset{x_i}{\text{Maximize}} & \underset{=1}{\overset{n}{\text{pixi}}} & (1) \end{array}$$

Subject to :

$$\underset{=1}{\overset{M}{\underset{wijxi}{x}}} \underbrace{wijxi}_{j} \underbrace{j}_{j=1;2;...m} (2)$$

 $x_i 2 f0; 1g$ i = 1; 2; 3::n (3)

The goal of MDKP is to insert a subset of objects into knapsacks that obtain maximum profit without

capacity viola-tion of knapsacks. This characteristic reveal this problem has all nonnegative entries. More specifically, we can say $p_i > 0$,

$$d_j > 0, 0$$
 w_{jj} d_j and w_{jj} d_j for all $i 2 n$ and $j 2 m$

Rest of the paper is structured as follows. Genetic algorithm for MDKP is described in Section II. Section III give the overview of related work for MDKP in domain of genetic algorithm. Section IV explain CGA to solve multidimensional knapsack problem. Experimental environments and results are given in Section V. At last conclusion is made in section VI.

II. GENETIC ALGORITHM FOR MULTIDIMENSIONAL KNAPSACK PROBLEM

Genetic algorithm is computation optimization technique which mimic the evolutionary principle i.e. fittest individual will survive in each generation. GA is guided by three main operation: selection, crossover and mutation. Individuals re-production are governed by crossover and mutation operation. Selection operation choose fittest individuals from population to form mating pool. Algorithm run as follow : A set of random individuals are produced which serve as the initial population of GA. The individual can be expressed in real number, binary number, integer number, character based on nature of problem. MDKP uses the binary representation. Individual goodness measurement is estimated through fitness function. MDKP fitness function is maximize the objective function.

Algorithm 1 Genetic Algorithm (GA)

Initialize the control parameters ;

Initialize randomly N individuals as initial population P

(G); while stopping criterion(s) doesn't meet do

- i. Choose individuals to create mating pool via selection operator.
- ii.Produce new individuals via crossover operator.
- iii. Mutate obtained individuals using mutation operator.

iv. Evaluate fitness value of new individuals.

- v. Add new individuals with population.
- vi. Sort population with respect to fitness value.
- vii. Choose top N individuals as population of next generation.

end while

Return the fittest individual as the solution.

Every individual are transformed from one generation to next generation depending on fitness value i.e individual with high fitness value has high probability to participate in upcoming generation. GA employee crossover operator for exploration and mutation operator for exploitation. MDKP uses one point crossover and random mutation. Number of crossover operations are govern through crossover rate while number of mutation operations are govern through mutation rate. A cycle of GA comprise of applying GA operations i.e. evaluation, reproduction, crossover and mutation. Each generation produce a set of individuals. GA termination return the fittest individual as solution. The details of GA operators i.e. selection, crossover, and mutation are explained in [14].

III. RELATED WORK

J.P. Martin and C.B Neto and M.K. Crocomo made compar-ison among four linkage learning based genetic algorithm for multidimensional knapsack problem namely, extended com-pact genetic algorithm (eCGA), bayesian optimization algo-rithm (BOA) with detection graphs, BOA with community detection and linkage tree genetic algorithm (LTGA) [15]. eCGA and LTGA have better exploration and exploitation capabilities than BOA versions with small size population (N=100) and produce better quality solutions for MDKPs. All algorithms with large population size produce approxi-mately similar quality solutions for MDKPs but these have different running time and function evaluations. When consider solutions quality, functions evaluations and running time of algorithms, BOA versions have better running time than eCGA and LTGA. It is very difficult to make comparison for computational time between eCGA and LTGA because these have different reproduction operators.

Khuri, Back and Heitkotter proposed a GA for 0/1 MDKP [16]. Algorithm allowed breeding and participation of infeasi-ble solutions during search. In this GA, reproduction proceeds by combining the partial information from all element of population. A test suite with few problems were used to test this GA; only moderate quality solutions were produced. Hoff, Lokentangen and Mittet proposed a GA with proper tuned parameters and search mechanisms in which only feasible solutions were allowed during search [17]. This GA discovered optimal for 54 problems out a suite of 55 problems.

Rudolph and Sprave proposed a GA in which selection of parent is not unrestricted as in standard GA but is restricted be-tween neighboring solutions [18]. In their GA every infeasible solutions were penalized as GA of Khursi, Back and Heitkotter [16]. The premier component of this GA be solutions local interaction with in a spatial structured population and self ad-justed controlling mechanism of selection pressure. P. C. Chu and J.E. Beasley proposed heuristic dependent GA for MDKP [19]. In their GA heuristic operator was employed which work with problem specific knowledge. Heuristic operator repaired infeasible solutions and algorithm discover optimal solution among feasible solutions. C. Cota and J.M. Troya proposed another GA which have an improvement mechanism whose objective is to convert infeasible solutions in search space to feasible solutions [20]. Experimental results were better to basic GA, but not as good as Chu and Beasley's GA results.

IV. CLUSTERED GENETIC ALGORITHM FOR^{two clusters.}

MULTIDMENSIONAL KNAPSACK PROBLEM

In this work, clustered genetic algorithm is developed for multidimensional knapsack problem. CGA is explained in algorithm 2. CGA uses an advanced selection method which employee fuzzy and roulette wheel selection called fuzzy roulette wheel selection. Selection mechanism always choose first individual and assigned it to first partition of roulette wheel. Partition size is relative to fitness value. Next similarity value between first individual and remaining individuals are estimated. The individual with highest similarity value occupy the second partition of roulette wheel. This procedure repeat until all individuals are allocated to partition in roulette wheel. Figure 1 show the 4 individuals in binary representation and procedure of assigning individual to the partition of roulette wheel. Then mechanism determined overlapping area between adjacent individuals. Overlapping area size is correlated by similarity value between adjacent individuals. In mating pool formation, a random number is generated. After for each individual membership degree to which generated number belongs is calculated. Individual with highest membership degree is selected. This process repeat until mating pool size is equal to population size. Figure 2 show the fuzzy roulette wheel selection mechanism for 4 individuals in Figure 1.

Fig. 1: Procedure of assigning individual to partition of roulette wheel .

CGA adopt a special crossover operator which uses the hierarchical algorithm to form clusters. Individuals in the mating pool are divided into two clusters using hierarchical clustering algorithm. In the hierarchical algorithm, single linkage procedure given in eq (2) is apply to estimate similarity between the two clusters.

Fig. 2: Fuzzy roulette wheel.

$$S(X; Y) = M AX fs(x; y)g$$
(4)

IJTSRD | May - June 2017 Available Online@www.ijtsrd.com

Where X and Y are two clusters and s(x,y) stand for similarity between individuals x and y. A pair of offsprings are generated by mating of a random parent from first cluster and a random parent from second cluster. One point crossover operator is employed. This step is continued N/2-1 times. Random mutation is performed for each offspring to keep diversity and to defeat the problem of premature convergence.

Fig. 3: Selection of parent pair for crossover.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To show CGA is better technique to GA, experiments has carried out over 30 standard problems for multidimensional knapsack.

Algorithm 2 Clustered Genetic Algorithm (CGA)

Initialize the control parameters ;

Initialize randomly N individuals as initial population P (G); while stopping criterion(s) doesn't meet do

- i.Choose individuals to create mating pool via fuzzy roulette wheel selection operator.
- ii. Create two clusters of individuals using hierarchical clustering algorithm .
- iii. (iii)Produce new individuals by using crossover operator with a random parent from cluster 1 and a random parent from cluster 2.
- iv. Mutate obtained individuals using mutation operator.

v. Evaluate fitness value of new individuals.

- vi. Add new individuals with population.
- vii. Sort population with respect to fitness value.
- viii. Choose top N individuals as population of next generation.

end while

Return the fittest individual as the solution.

A. Experimental Environment

GA and CGA depict in previous section were implementd for multidimensional Knapsack. Experiments were de-signed to estimate average mean error and average mean execution time for GA and CGA. Data set for multidimen-sional knapsack is available at http://people.brunel.ac.uk/ mastjjb/jeb/orlib/files/mknap2.txt. Crossover rate CR = 0.7 and mutation rate MR = 0.01. The experiments were conducted on 7th generation intel core i-7-7700k processor (4.2 GHz) and coded in c++ whose compilation is done using Dev c++ compiler.

Fig. 5: Error comparision between GA and CGA.

B. Results and Analysis

Experimental results of GA and CGA for MDKPs are given in Table I and Table II respectively. Column 1 denote instance no and column 2 represent MDKP, column 3 and 4 show number of knapsacks and number of objects corresponding to problem, columns 5 denotes the optimal value, columns 6-10 keeps the output value of five run, simulation statical information is given in columns 11-14 and column 15 show mean time taken in execution. GA and CGA has average mean error 4.49% and 1.764% respectively while GA and CGA has average mean execution time 2.34 seconds and 2.34 seconds respectively. CGA has considerable less average mean error in comparison of GA but CGA has slightly higher average mean execution time in comparison of GA. Figure 5 plot the average mean error against the problem instance and Figure 6 plot the average mean execution time against the problem instance.

Fig. 6: CPU running time comparison between GA and CGA.

VI. CONCLUSION AND FUTURE WORK

This paper addressed multidimensional knapsack problem via the cluster genetic algorithm to find optimal. CGA employ the fuzzy roulette selection mechanism for individual selection to form mating pool. CGA adopts a special kind of crossover operator in which uses hierarchical clustering algorithm to form two clusters from mating pool. A pair of offspring is generated by mating of a random parent from first cluster and a random parent from second cluster. CGA performance has examined against GA w.r.t 30 standard MDKPs over two criterion i.e average mean error and average mean execution time. As GA and CGA experimental results are shown, CGA has better performance than GA for MDKP. A comparative study of different mutation operators with CGA will be studied in the future work.

REFERENCES

- Weingartner, H.M. and Ness, D.N., 1967. Methods for the solution of the multidimensional 0/1 knapsack problem. Operations Research, 15(1), pp.83-103.
- Petersen, C.C., 1967. Computational experience with variants of the Balas algorithm applied to the selection of R&D projects. Management Science, 13(9), pp.736-750.
- 3) Weingartner, H.M., 1974. Mathematical programming and the analysis of capital budgeting problems. London: Kershaw.
- 4) McMillan, C. and Plaine, D.R., 1973. Resource allocation via 01 pro-gramming. Decision Sciences, 4, pp.119-132.
- Meier, H., Christofides, N. and Salkin, G., 2001. Capital budgeting under uncertaintyan integrated approach using contingent claims analysis and integer programming. Operations Research, 49(2), pp.196-206.
- 6) Kleinmuntz, D.N. and Kleinmuntz, C.E., 2001. Multiobjective capital budgeting in not-for-profit hospitals and healthcare systems. unpublished paper, October.
- 7) Gearing, C.E., Swart, W.W. and Var, T., 1973. Determining the opti-mal investment policy for the tourism sector of a developing country. Management science, 20(4-part-i), pp.487-497.
- Gavish, B. and Pirkul, H., 1982. Allocation of databases and processors in a distributed computing system. Management of Distributed Data Processing, 31, pp.215-231.
- 9) Chajakis, E. and Guignard, M., 1992, October. A model for delivery of groceries in vehicle with multiple compartments and Lagrangean approximation schemes. In Proceedings of Congreso Latino Ibero-Americano de Investigacin de Operaciones e Ingeniera de Sistemas.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

- 10) Gilmore, P.C. and Gomory, R.E., 1966. The theory and computation of knapsack functions. Operations Research, 14(6), pp.1045-1074.
- Bellman, R., 1957. Dynamic Programming Princeton University Press Princeton. New Jersey Google Scholar.
- 12) Straszak, A., Libura, M., Sikorski, J. and Wagner, D., 1993. Computer-assisted constrained approval voting. Group Decision and Negotiation, 2(4), pp.375-385.
- 13) Vasquez, M. and Hao, J.K., 2001. A logicconstrained knapsack formu-lation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite. Computational Optimization and Applications, 20(2), pp.137-157.
- 14) Whitley, Darrell. "An executable model of a simple genetic algorithm." Foundations of genetic algorithms 2, no. 1519 (2014): 45-62.
- 15) Martins, J.P., Neto, C.B., Crocomo, M.K., Vittori, K. and Delbem, A.C., 2013, June. A comparison of linkage-learning-based genetic algorithms in multidimensional knapsack problems. In Evolutionary Computation (CEC), 2013 IEEE Congress on (pp. 502-509). IEEE.

- 16) Khuri, S., Bck, T. and Heitktter, J., 1994, April. The zero/one multiple knapsack problem and genetic algorithms. In Proceedings of the 1994 ACM symposium on Applied computing (pp. 188-193). ACM.
- 17) Hoff, A., Lkketangen, A. and Mittet, I., 1996, November. Genetic algorithms for 0/1 multidimensional knapsack problems. In Proceedings Norsk Informatikk Konferanse (pp. 291-301).
- 18) Rudolph, G. and Sprave, J., 1996, September. Significance of locality and selection pressure in the grand deluge evolutionary algorithm. In International Conference on Parallel Problem Solving from Nature (pp. 686-695). Springer Berlin Heidelberg.
- 19) Chu, P.C. and Beasley, J.E., 1998. A genetic algorithm for the multidi-mensional knapsack problem. Journal of heuristics, 4(1), pp.63-86.
- 20) Cotta, C. and Troya, J.M., 1998. A hybrid genetic algorithm for the 01 multiple knapsack problem. In Artificial neural nets and genetic algorithms (pp. 250-254). Springer Vienna.

Sr	Test Proble	m	n	Opt ime		Number of Runs					Statistical Information				Time
110	ms			l		Kulls									
					1	2	3	4	5	Max		Min	Avg	% Err	
1	SENT01	30	60	7772	7712	7736	7725	7719	7723	7736		7712	7723	0.6 3	4.27
2	SENT02	30	60	8722	8690	8662	8702	8669	8682	8702		8662	8681	0.4 6	4.23
3	WEING 1	2	28	1412 78	1379 02	1388 04	1386 02	1399 03	13990 4	13990 4		13790 2	1390 23	1.6 0	1.58
4	WEING	2	28	1308	1244	1257	1249	1239	12498	12575		12398	1248	4.6	1.60
	2			83	53	52	73	89	3	2		9	30	2	
5	WEING	2	28	95667	92296	9199	9229	92398	92451	92451		9199	92287	3.5	1.68
	3					8	2					8		3	
6	WEING	2	28	1193	1166	1164	1159	1164	11679	11679		11599	1164	2.4	1.71
	4			37	25	41	98	59	2	2		8	63	1	
7	WEING	2	28	98796	93667	9366	9344	93778	93631	93778		9344	93636	5.2	1.53
	5					2	2					2		2	
8	WEING	2	28	1306	1244	1260	1260	1261	12615	12617		12445	1257	3.7	1.59
	6			23	50	93	92	72	8	2		0	93	0	

0	WEING	2	10	1005	1054	1057	1050	1057	1056	10508	1054	1057	3 /	5 72
9			5	445	402	806	803	804	405	03	402	244	9. 4 9	5.12
10	/ WEING	2	10	62/13	6214	6217	6206	6218	62176	62188	62064	6215	0.4	5.64
10			5	10	22	98	42	82	1	2100	2004	0215	5	5.04
11	WFISH	5	30	4554	4214	4298	4288	4178	4292	4298	4178	4254	65	1.62
11	01	5	50	-33-		4270	7200	4170		4270	4170	7237	9	1.02
12	WEISH	5	30	4536	4197	4182	4178	4181	4187	4197	4178	4187	77	1 58
	02			1000		1102	1170		1107	1197	11/0	1107	4	1.00
13	WEISH	5	30	4115	3990	3987	3976	3973	3984	3990	3973	3982	3.2	1.64
10	03				0,,,,,	0,0,1	0,,,0	0,,0		0,,,,,	0,10	0,01	3	1.0.1
14	WEISH	5	30	4561	4314	4317	4323	4302	4304	4323	4302	4312	5.4	1.66
	04												5	
15	WEISH	5	30	4514	4311	4309	4388	4303	4309	4388	4303	4324	4.2	1.63
	05												1	
16	WEISH	5	40	5557	5331	5333	5307	5228	5291	5333	5228	5298	4.6	2.08
	06												6	
17	WEISH	5	40	5567	5186	5193	5177	5244	5180	5244	5177	5196	6.6	2.12
	07												6	
18	WEISH	5	40	5605	5302	5368	5352	5214	5309	5368	5214	5329	4.9	2.06
	08												2	
19	WEISH	5	40	5246	4901	4848	4898	4886	4812	4901	4812	4869	7.1	2.31
	09												9	
20	WEISH	5	50	6339	5916	5923	5978	5981	5972	5981	5916	5954	5.9	2.28
	10												9	
21	WEISH	5	50	5643	5387	5362	5324	5336	5361	5387	5 <mark>32</mark> 4	5354	5.1	2.70
	11												2	
22	WEISH	5	50	6339	5984	5972	5988	5977	5974	5988	5972	5979	5.6	2.66
	12												8	
23	HP1	4	28	3418	3220	3198	3224	3278	3215	3278	3198	3227	5.5	1.54
	TTDA			210.6	2016	2010		• • • • •	0.010				9	1.00
24	HP2	4	35	3186	3016	3010	3078	2999	2912	3078	2912	3003	5.7	1.80
	DD 1		07	2000	2016	2024	20.42	2010	2020	20.42	2016	2026	4	1.((
25	PBI	4	27	3090	2916	2924	2942	2918	2930	2942	2916	2926	5.3	1.66
26	DD2	4	24	2100	2070	2007	20(2	2071	20(2	2007	20(2	2072		1.7(
26	PB2	4	34	3186	2978	2986	2962	29/1	2963	2986	2962	2972	6./	1./6
27	DD 4	2	20	051(0	02272	0270	0250	02(((02790	02790	0227	02(0(2	1 (4
21	PB4	2	29	95168	92372	9270	9250	92666	92/80	92780	9237	92606	2.0	1.04
20	DD.5	10	20	2120	2027	8	4	2012	2041	2042	2012	2022	9	1.50
28	PB3	10	20	2139	2037	2032	2043	2012	2041	2043	2012	2033	4.9	1.30
20	DD6	20	40	776	706	740	765	759	766	766	706	747	27	2.40
29	rd0	50	40	//0	/00	/40	/03	138	/00	/00	/00	/4/	Э./ Л	5.40
30	DD7	30	37	1025	077	002	066	072	022	002	022	069	+ 6.4	3.02
50	ΓD/	50	57	1033	7//	772	900	713	932	772	932	900	0.4 7	5.02
1	1			1	1		1		1		1		/	

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 TABLE I: Result of Genetic Algorithm For Multidimensional Knapsack Problems.

International Journal	of Trend in S	cientific Research	and Development	(IJTSRD)) ISSN: 2456-6470
-----------------------	---------------	--------------------	-----------------	----------	-------------------

Sr no	Test Proble ms	m	n	Opt ima			Numb Ru	er of ns			Statis Inform	tical ation		Time (s)
					1	2	3	4	5	Ma	Min	Avg	%Er	
1	SENT01	20	60	7770	7760	7746	7750	7750	- 17	X 776	7746	7751	r	4.05
1	SENIUI	30	00		//02	//40	//38	1152	//4/	2	//40	//34	0.25	4.95
2	SENT02	30	60	8722	8712	8707	8705	8716	8710	871	8705	8710	0.14	4.89
3	WEING1	2	28	1412	1401	1401	1401	1401	14077	0 140	14017	1403	0.69	1.83
	WEDLCA		•	78	77	83	96	78	1	771	7	01		1.00
4	WEING2	2	28	1308 83	1278 62	1278 04	1281	1279 03	12799	127 993	12780	1279 934	2.25	1.82
5	WEING3	2	28	95667	94570	9458 2	9444 8	94684	94556	945 82	9444	94568	1.15	1.85
6	WEING4	2	28	1193	1179	1179	1178	1179	11794	117	11789	1179	1.17	1.92
				37	82	47	92	32	2	982	2	39		
7	WEING5	2	28	98796	96694	9670 2	9688 4	96879	96861	968 79	9669 4	<mark>9</mark> 6804	2.02	1.77
8	WEING6	2	28	1306	1285	1286	1287	1286	12863	128	12850	1286	1.53	1.91
				23	03	64	04	30	9	7 <mark>04</mark>	3	28		
9	WEING7	2	10	1095	1074	1076	1075	1074	1073	107	1 <mark>073</mark>	1075	1.85	6.10
			5	445	998	681	662	552	902	668 1	902	159		70
10	WEING8	2	10	6243	6231	6229	6231	6232	62311	623	62299	6231	0.19	6.08
			5	19	10	90	84	08	3	208	0	21		-
11	WEISH01	5	30	4554	4428	4462	4448	4436	4461	446 2	4428	4447	2.35	1.93
12	WEISH02	5	30	4536	4402	4398	4372	4410	4403	440	4372	4397	3.06	1.87
										3				
13	WEISH03	5	30	4115	4083	4076	4083	4071	4082	408	4071	4079	0.87	1.90
14	WEISH04	5	30	4561	4461	4448	4457	4434	4445	446	4434	<mark>44</mark> 49	2.46	1.92
15	WEISH05	5	30	4514	4476	4487	4462	4462	4468	448	4462	4452	1.00	1.87
16	WEISH06	5	40	5557	5441	5436	5392	5446	5463	546	5392	5436	2.18	2.44
										3				
17	WEISH07	5	40	5567	5395	5407	5437	5437	5414	543 7	5395	5392	2.83	2.52
18	WEISH08	5	40	5605	5518	5507	5532	5522	5536	553	5507	5523	1.46	2.38
19	WEISH09	5	40	5246	5076	5084	5102	5078	5080	510	5076	5084	3.09	2.68
20	WEISH10	5	50	6339	6201	6198	6182	6180	6184	2 620	6180	6189	2.37	2.76
01	WEIGHT	-		5640	5550	5527	5500	5560	5500	1		5550	1.61	2.07
21	WEISHII	5	50	5643	5558	5537	5529	5568	5568	556 8	5529	5552	1.61	3.07
22	WEISH12	5	50	6339	6236	6199	6214	6208	6233	623	6199	6218	1.91	3.02

22	IID1	1	20	2/10	2260	2222	2257	2262	2241	226	2222	2252	1.02	1.00
23	HPI	4	28	3418	3308	3332	3357	3362	3341	330	3332	3352	1.93	1.82
										8				
24	HP2	4	35	3186	3109	3112	3106	3104	3114	311	3104	3109	2.42	2.12
						-			_	4				
25	PB1	4	27	3090	3012	3001	3017	3005	3015	301	3001	3010	2.58	1.93
										7				
26	PB2	4	34	3186	3094	3088	3116	3098	3089	309	3088	3097	2.79	2.06
										8	5			
27	PB4	2	29	95168	94207	9399	9410	94103	94111	942	9399	94105	1.12	1.89
						8	6			07	8			
28	PB5	10	20	2139	2099	2111	2104	2106	2115	211	2099	2107	1.50	1.76
										5	/			
29	PB6	30	40	776	763	758	759	766	769	769	758	763	1.68	3.87
30	PB7	30	37	1035	1008	1017	1012	1006	1002	101	1002	1009	2.51	3.49
										7				

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

TABLE II: Result of Clustered Genetic Algorithm for Multidimensional Knapsack Problems.

