

International Journal of Trend in
 International Open Access

 ISSN No: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

Tools for Software

Prabhjot Singh Anand

Jagan Institute of Management Studies, Rohini, Delhi

ABSTRACT
Every day we use tools to help us achieve tasks; the
use of a good tool in general will make a job much
easier. When it comes to working with a computer,
the tools we use are pieces of software which allow us
to do our work. Without a text editor, it would be
impossible to write a paper using a computer. In both
the digital and real world, there are many options for
tools for any job, and choosing the right tool can
mean the difference between huge success and utter
failure. For a software engineering project, t
decision of what tools to use can make a large
difference towards the cost and effectiveness of the
project. Consider using a notepad text editor to write
code for a project with tens of thousands of lines of
code, it would be impractical at best.

This paper is designed to identify the major tools used
in a reengineering project, and identify what choices
are available for each of those pieces of software.

KEY WORDS: Software re-engineering,
reverse engineering.

1. Software Re-engineering
Software re-engineering at its core is the process of
taking an old, possibly not working, application and
making it new again. New software development is a
well known process of taking requirements and
turning them into code and a running application, but
when re-engineering is considered, first the project
team is reviving an existing asset to become the basis
for this application.

Accordingly, the primary raw material for a
reengineering project is the existing application. The
first step in the process is to take the current version,
and turn it back into the code which it came from.
Two tools make this process possible: the hex editor,

International Journal of Trend in Scientific Research and Development (IJTSRD)
International Open Access Journal | www.ijtsrd.com

ISSN No: 2456 - 6470 | Volume - 3 | Issue – 1 | Nov

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

Tools for Software Re-Engineering

Prabhjot Singh Anand1, Deepak Chahal2, Latika Kharb
1MCA Student, 2Professor

Jagan Institute of Management Studies, Rohini, Delhi, India

day we use tools to help us achieve tasks; the
use of a good tool in general will make a job much
easier. When it comes to working with a computer,
the tools we use are pieces of software which allow us
to do our work. Without a text editor, it would be
mpossible to write a paper using a computer. In both

the digital and real world, there are many options for
tools for any job, and choosing the right tool can
mean the difference between huge success and utter
failure. For a software engineering project, the
decision of what tools to use can make a large
difference towards the cost and effectiveness of the
project. Consider using a notepad text editor to write
code for a project with tens of thousands of lines of

paper is designed to identify the major tools used
in a reengineering project, and identify what choices
are available for each of those pieces of software.

engineering, UML,

engineering at its core is the process of
taking an old, possibly not working, application and
making it new again. New software development is a
well known process of taking requirements and

application, but
engineering is considered, first the project

team is reviving an existing asset to become the basis

Accordingly, the primary raw material for a
reengineering project is the existing application. The

p in the process is to take the current version,
and turn it back into the code which it came from.
Two tools make this process possible: the hex editor,

and the decompiler. Further, the code may be
translated into a new language, and a design is then
extracted from it. Debuggers, code translators and
document generators aid greatly in this process.
Finally, with the design created in UML, requirements
can be derived, and the conceptual goals for the old
piece of software are defined.

With the conceptual goals in hand, the changes
needed to create a new product can begin. The
forward-engineering half of the process mirrors a
normal development schedule: requirements are
derived from the goals, a design is created from the
requirements, and finally code is
design. With a reengineering project, however, a few
extra pieces of information are in hand. The original
design can be used to aid in creation of a new design,
and the same for requirements and code. This allows
for both a more streamlined process, but the tools will
aid along the way. UML tools allow for the creation
of good design, code generators create some of the
code for us, IDEs and debuggers aid in the
development process, and finally compilers and
testing tools make the fini
correctly.

For each of these tools, there are many options, and as
was expressed, choosing the right tool matters.

2. Reverse Engineering - Implementation to Code
The first step in a software re-
get some code to work with. The way that code is
derived, when raw source code isn’t readily available,
is by decompiling the executable of the source
application. Decompilers are used to increase the level
of abstraction of code to a higher level: move from
machine code to a human readable programming
language. Since the machine code of a particular
application was originally derived by compiling a

Research and Development (IJTSRD)
www.ijtsrd.com

1 | Nov – Dec 2018

2018 Page: 600

, Latika Kharb2

and the decompiler. Further, the code may be
translated into a new language, and a design is then

tracted from it. Debuggers, code translators and
document generators aid greatly in this process.
Finally, with the design created in UML, requirements
can be derived, and the conceptual goals for the old

goals in hand, the changes
needed to create a new product can begin. The

engineering half of the process mirrors a
normal development schedule: requirements are
derived from the goals, a design is created from the
requirements, and finally code is written to match the
design. With a reengineering project, however, a few
extra pieces of information are in hand. The original
design can be used to aid in creation of a new design,
and the same for requirements and code. This allows

amlined process, but the tools will
aid along the way. UML tools allow for the creation
of good design, code generators create some of the
code for us, IDEs and debuggers aid in the
development process, and finally compilers and
testing tools make the finished product work

For each of these tools, there are many options, and as
was expressed, choosing the right tool matters.

Implementation to Code
-engineering project is to

ork with. The way that code is
derived, when raw source code isn’t readily available,
is by decompiling the executable of the source
application. Decompilers are used to increase the level
of abstraction of code to a higher level: move from

a human readable programming
language. Since the machine code of a particular
application was originally derived by compiling a

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

specific language, a decompiler for that language is
required.

2.1 Decompilers:
Some of the tools available in the market for
decompilers are:
1. Jad Clipse (the JAD plugin for Eclipse)
2. Net Framework Decompiler
3. Mocha Decompiler

2.2 Comparison:
Decompilation is often a messy process, stripping
code of comments, organization, or other helpful
properties. This especially applies with certain
computer languages: Intermediate languages like Java
use formats that are closer to the original source than
the native assembly codes you get from C++, which
saves no metadata about the original code;
decompiling a native language will give
comprehensible source files that aren’t as easily
useful for reverse engineering. However, even in the
best scenario for decompilation, you should use
decompiled code on a case by case basis.
Decompilers can be a shortcut to source code for
analysis of a legacy application’s design, but basing
any new code directly off the decompiled code carries
high risks. If the decompiled code is sufficiently
obtuse, it may even be more efficient to analyze
behaviors alone to determine the design and skip the
source code step for parts of the project!

2.3 Feature Comparison:
For every computer language, a wide variety of
decompilers are virtually guaranteed to exist.
Operating with GUIs or via a command line, they
provide translation from a lower level language to
(hopefully) readable source code of varying degrees
of quality, adding spacing and simplification so that
programmers may interpret them. However
quality of outputted code varies from decompiler to
decompiler, and many errors can result depending on
the process used by the chosen tool.

3. Code Translators:
Some of the tools available are:
DMS Software Reengineering Toolkit RES

3.1 Comparison
When to use code translators: The quality of code
translated between languages will probably vary even
more than the results of decompilers vary between
each other. As such, thorough testing and

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

specific language, a decompiler for that language is

Some of the tools available in the market for

Clipse (the JAD plugin for Eclipse)

is often a messy process, stripping
code of comments, organization, or other helpful
properties. This especially applies with certain
computer languages: Intermediate languages like Java
use formats that are closer to the original source than

you get from C++, which
saves no metadata about the original code;

give you less
aren’t as easily

useful for reverse engineering. However, even in the
pilation, you should use

decompiled code on a case by case basis.
Decompilers can be a shortcut to source code for
analysis of a legacy application’s design, but basing
any new code directly off the decompiled code carries

de is sufficiently
obtuse, it may even be more efficient to analyze
behaviors alone to determine the design and skip the

!

For every computer language, a wide variety of
are virtually guaranteed to exist.

Operating with GUIs or via a command line, they
provide translation from a lower level language to
(hopefully) readable source code of varying degrees
of quality, adding spacing and simplification so that

interpret them. However, the
quality of outputted code varies from decompiler to
decompiler, and many errors can result depending on

RES

When to use code translators: The quality of code
translated between languages will probably vary even
more than the results of decompilers vary between
each other. As such, thorough testing and behavioral

comparisons with the legacy system are necessary
when basing later, forward-
reverse engineered translations. Depending on the
availability of quality translation tools and the relative
size of the undertaking, it may be safer to have your
programmers learn and discern design from the
original legacy code.

3.2 Feature Comparison:
This description of code translators, in fact, is but a
subset of the availability of automated code
generation tools. Some are applicable in different
phases than this one, such as tools that translate
design (often in a UML-like format) into templates of
connected code, or provide tools that generate
interfaces in a desired language for access to a
database system (such as the object
Objectivity). There are even tools that simply translate
shorthand templates you write into full
When leveraging these powerful automation tools,
however, keep in mind that every automated step is
one more level of abstraction between your systems’
codebase and human-understandable code made by
human programmers, as the forward engineering
begins. If a team member codes part of a library, at
least one person (said member) is privy to the
reasoning behind its construction and how it works. If
a portion of a library is auto
guarantee that anyone understands it, making it less
maintainable.

4. Reverse Engineering - Code to Design
Documentation Generator
The name is self explanatory. Documentation
generators are extremely useful for reverse
engineering. They save an enormous amount of
human resources. Instead of manually going thr
the code and figuring out what the program does,
documentation generators can do a great deal of it for
you. They read the source program, based on the
comments, the return types, parameters and definition
of methods the document generators develop a
documentation with all this information. Though it is
not complete, it is a good start. There are language
specific generators and language independent
generators. Some available ones are:

a) Java Doc
b) Php Documentor
c) Doc-O-Matic

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

2018 Page: 601

y system are necessary
- engineered code off

reverse engineered translations. Depending on the
availability of quality translation tools and the relative
size of the undertaking, it may be safer to have your

discern design from the

This description of code translators, in fact, is but a
subset of the availability of automated code
generation tools. Some are applicable in different
phases than this one, such as tools that translate

like format) into templates of
connected code, or provide tools that generate
interfaces in a desired language for access to a
database system (such as the object-oriented database
Objectivity). There are even tools that simply translate
shorthand templates you write into full-fledged code.
When leveraging these powerful automation tools,
however, keep in mind that every automated step is
one more level of abstraction between your systems’

understandable code made by
human programmers, as the forward engineering

s. If a team member codes part of a library, at
least one person (said member) is privy to the
reasoning behind its construction and how it works. If
a portion of a library is auto-generated, there is no
guarantee that anyone understands it, making it less

Code to Design

The name is self explanatory. Documentation
generators are extremely useful for reverse
engineering. They save an enormous amount of
human resources. Instead of manually going through
the code and figuring out what the program does,
documentation generators can do a great deal of it for
you. They read the source program, based on the
comments, the return types, parameters and definition
of methods the document generators develop a small
documentation with all this information. Though it is
not complete, it is a good start. There are language
specific generators and language independent
generators. Some available ones are:

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

4.1 Comparison
Documentation comes in a variety of formats, and the
variety of generators reflects this. Some generators
can produce diagrams and visuals of the
interconnections between packages and classes, or
embed hyperlinks between parts of the documentation
in their class and method descriptions. Sandcastle, for
example, is a project which generates MSDN
linked and searchable documentation based on .NET
source codes’ comments and metadata. If the code of
a legacy system to be reverse-engineered has enough
metadata to warrant use of a documentation generator
- or your programmers can record this metadata inline
while inspecting the system’s codebase
the generators available for your current programming
language, compare the metadata they require fo
effectiveness to the information available in your
codebase, and then generate documentation to be
expanded upon by your team as the legacy system’s
functionality becomes clearer.

5. Forward Engineering - Requirements to Design
As expected, the design phase in a re
project mirrors the typical design phase of any
software project. The requirements are used and
verified to create a software design which fits. In this
step, the most important tool is the Unified Modelling
Language (UML) - more specifically the automated
tools which allow UML to be effectively used.UML
a system of diagram styles and models
different essential parts of the design
system to be created. One primary example is the
class diagram, which allows for classes in an object
oriented design to be defined by their attributes and
relations to other classes. UML tools support several
major functional processes to make the design and
coding step easier.

6. Diagramming
Diagramming is the most basic of tasks for UML, the
creation and editing of the actual diagrams and
models. The designers on a project will use
diagramming to create the class diagrams, use case
models, and many other models which represent the
software design. This is the core functionality of a
UML tool.

7. Code Generation
For a UML tool to have code generation features
means that it can take the diagrams created and turn
them into the basic code structure of the resulting
program. In some versions, the user can provide a

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

Documentation comes in a variety of formats, and the
variety of generators reflects this. Some generators
can produce diagrams and visuals of the
interconnections between packages and classes, or
embed hyperlinks between parts of the documentation

class and method descriptions. Sandcastle, for
example, is a project which generates MSDN-style
linked and searchable documentation based on .NET
source codes’ comments and metadata. If the code of

engineered has enough
ata to warrant use of a documentation generator

or your programmers can record this metadata inline
while inspecting the system’s codebase - then look at
the generators available for your current programming
language, compare the metadata they require for
effectiveness to the information available in your
codebase, and then generate documentation to be
expanded upon by your team as the legacy system’s

Requirements to Design
e in a re-engineering

project mirrors the typical design phase of any
software project. The requirements are used and
verified to create a software design which fits. In this
step, the most important tool is the Unified Modelling

ifically the automated
tools which allow UML to be effectively used.UML is

models which allow
 of a software

system to be created. One primary example is the
for classes in an object

oriented design to be defined by their attributes and
relations to other classes. UML tools support several
major functional processes to make the design and

Diagramming is the most basic of tasks for UML, the
creation and editing of the actual diagrams and
models. The designers on a project will use
diagramming to create the class diagrams, use case
models, and many other models which represent the

sign. This is the core functionality of a

For a UML tool to have code generation features
means that it can take the diagrams created and turn
them into the basic code structure of the resulting

r can provide a

skeleton of the program source, in template form, and
predefined tokens can be replaced with source code
snippets as part of the code generation process.

8. Model and Diagram Interchange
XML Metadata Interchange (XMI) is the format for
UML model interchange. XMI does not support UML
Diagram Interchange, which allows you to import
UML diagrams from one model to another.

9. Model Transformation
A key concept associated with the Model
architecture initiative is the capacity to transform a
model into another model. For example, one might
want to transform a platform
model into a Java platform
implementation. It is also possible to re
models to produce more concise
UML models. It is possible to generate UML models
from other modeling notations, such as BPMN. The
standard that supports this is called QVT for
Queries/Views/Transformations. One example of an
open- source QVT-solution is the ATL language built
by INRIA.

10. IDE’s
An integrated development environment (IDE) is a
software application that provides comprehensive
facilities to computer programmers for software
development. An IDE normally consists of a source
code editor, build automation tools and a debugger.

10.1 Features of IDE’s
Visual Programming
Visual programming is a usage scenario in which an
IDE is generally required. Visual IDEs allow users to
create new applications by moving programming,
building blocks, or code nodes to create flowcharts or
structure diagrams that are then compiled or
interpreted. These flowcharts often are based on the
Unified Modelling Language.

10.2 Multiple Language support
Some IDEs support multiple languages, such as
Eclipse, IntelliJ IDEA, My Eclipse or Net
based on Java, or Mono Develop, based on C#.
Support for alternative languages is often provided by
plugins, allowing them to be installed on the same
IDE at the same time. For example, Eclipse and
Netbeans have plugins for C/C++,
example Ada GIDE), Perl, Pyt
among other languages in use.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

2018 Page: 602

skeleton of the program source, in template form, and
predefined tokens can be replaced with source code
snippets as part of the code generation process.

Model and Diagram Interchange
XML Metadata Interchange (XMI) is the format for

del interchange. XMI does not support UML
Diagram Interchange, which allows you to import
UML diagrams from one model to another.

A key concept associated with the Model-driven
architecture initiative is the capacity to transform a

del into another model. For example, one might
want to transform a platform-independent domain
model into a Java platform-specific model for
implementation. It is also possible to re-factor UML
models to produce more concise and well-formed

is possible to generate UML models
from other modeling notations, such as BPMN. The
standard that supports this is called QVT for
Queries/Views/Transformations. One example of an

solution is the ATL language built

rated development environment (IDE) is a
software application that provides comprehensive
facilities to computer programmers for software
development. An IDE normally consists of a source
code editor, build automation tools and a debugger.

Visual programming is a usage scenario in which an
IDE is generally required. Visual IDEs allow users to
create new applications by moving programming,
building blocks, or code nodes to create flowcharts or

t are then compiled or
interpreted. These flowcharts often are based on the

Multiple Language support
Some IDEs support multiple languages, such as

Eclipse or Net Beans, all
Develop, based on C#.

Support for alternative languages is often provided by
plugins, allowing them to be installed on the same
IDE at the same time. For example, Eclipse and
Netbeans have plugins for C/C++, Ada, GNAT (for

GIDE), Perl, Python, Ruby, and PHP,
among other languages in use.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

10.3 Multiple Platform Support
Attitudes across different computing platforms
Support for various platforms like Linux, Macintosh,
and Windows etc.

11. Debuggers
A debugger or debugging tool is a computer prog
that is used to test and debug other programs (the
"target" program). The code to be examined might
alternatively be running on an instruction set
simulator (ISS), a technique that allows great power
in its ability to halt when specific conditions are
encountered but which will typically be somewhat
slower than executing the code directly on the
appropriate (or the same) processor. Some debuggers
offer two modes of operation—full or partial
simulation—to limit this impact.

11.1 Features of Debuggers
Typically, debuggers also offer more sophisticated
functions such as running a program step by (a) step
(single- stepping or program animation), (b) stopping
(breaking) (pausing the program to examine the
current state) at some event or specified instructio
means of a breakpoint, and (c) tracking the values of
variables. Some debuggers have the ability to modify
program state while it is running. It may also be
possible to continue execution at a different location
in the program to bypass a crash or logical error. Most
mainstream debugging engines, such as GDB and
DBX, provide console-based command line
interfaces. Debugger front-ends are popular
extensions to debugger engines that provide IDE
integration, program animation, and visualization
features.

12. Forward Engineering - Code to Executable to

Production
12.1 Compilers
A compiler is a computer program (or set of
programs) that transforms source code written in a
programming language (the source language) into
another computer language (the target lang
having a binary form known as object code). The
most common reason for wanting to transform source
code is to create an executable program.

Compilers are language Dependent. A few examples
are C++ compilers, Java compilers, C# compilers etc.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

Attitudes across different computing platforms
Support for various platforms like Linux, Macintosh,

A debugger or debugging tool is a computer program
that is used to test and debug other programs (the
"target" program). The code to be examined might
alternatively be running on an instruction set
simulator (ISS), a technique that allows great power
in its ability to halt when specific conditions are
encountered but which will typically be somewhat
slower than executing the code directly on the
appropriate (or the same) processor. Some debuggers

full or partial

ypically, debuggers also offer more sophisticated
functions such as running a program step by (a) step

stepping or program animation), (b) stopping
(breaking) (pausing the program to examine the
current state) at some event or specified instruction by
means of a breakpoint, and (c) tracking the values of
variables. Some debuggers have the ability to modify
program state while it is running. It may also be
possible to continue execution at a different location

ical error. Most
mainstream debugging engines, such as GDB and

based command line
ends are popular

extensions to debugger engines that provide IDE
integration, program animation, and visualization

Code to Executable to

A compiler is a computer program (or set of
programs) that transforms source code written in a
programming language (the source language) into
another computer language (the target language, often
having a binary form known as object code). The
most common reason for wanting to transform source
code is to create an executable program.

Compilers are language Dependent. A few examples
are C++ compilers, Java compilers, C# compilers etc.

13. Testing Tools
Software testing is an investigation conducted to
provide stakeholders with information about the
quality of the product or service under test. Software
testing can also provide an objective, independent
view of the software to allow the bu
appreciate and understand the risks of software
implementation. Test techniques include, but are not
limited to, the process of executing a program or
application with the intent of finding software bugs.
Thus to make the process of software test
efficient and easy we use tools that help us to
automate the process.

Conclusion
To sum up, tools can make or break your software.
With the right tool, you can make wonders. The right
tool makes your life easier but at the same time a
wrong tool can be the end of your career! A tool
cannot be selected just because it looks fancy or
because it is easily available in the market. A tool has
to be selected after all the considerations. A tool can
change your life.

References:
1. http://www.ibm.com/devel

ary/content/RationalEdge/sep04/bell
2. http://www.andromeda.com/people/ddyer/java/dec

ompiler-table.html
3. http://www.javaworld.com/javaworld/jw

1997/jw-07-decompilers.html?page=2
4. http://objectivity.com/pages/objectivity/c

programming-and-objectivitydb
5. http://www.infosys.tuwien.ac.at/Teaching/Courses

/SWE/BellayGall-jsm98.pdf
6. http://e-

archivo.uc3m.es/bitstream/10016/5697/1/knowled
ge_aler_KBS_2002_ps.pdf

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

2018 Page: 603

Software testing is an investigation conducted to
provide stakeholders with information about the
quality of the product or service under test. Software
testing can also provide an objective, independent
view of the software to allow the business to
appreciate and understand the risks of software
implementation. Test techniques include, but are not
limited to, the process of executing a program or
application with the intent of finding software bugs.
Thus to make the process of software testing more
efficient and easy we use tools that help us to

To sum up, tools can make or break your software.
With the right tool, you can make wonders. The right
tool makes your life easier but at the same time a

can be the end of your career! A tool
cannot be selected just because it looks fancy or
because it is easily available in the market. A tool has
to be selected after all the considerations. A tool can

http://www.ibm.com/developerworks/rational/libr
ary/content/RationalEdge/sep04/bell
http://www.andromeda.com/people/ddyer/java/dec

http://www.javaworld.com/javaworld/jw-07-
decompilers.html?page=2

http://objectivity.com/pages/objectivity/c-net-
objectivitydb

http://www.infosys.tuwien.ac.at/Teaching/Courses
jsm98.pdf

archivo.uc3m.es/bitstream/10016/5697/1/knowled
ge_aler_KBS_2002_ps.pdf

