
International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470 www.ijtsrd.com

594
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

Various Approaches for Dynamic Load Balancing for
Multiprocessor Interconnection Network

Mukul Varshney
Assistant professor,

Computer Science and
Engineering, Sharda University

Dr. Anand Sharma
HOD, Aligarh College of

Engineering and Technology,
Aligarh

Abhakiran Rajpoot
Assistant professor ,

Computer Science and
Engineering, Sharda University

ABSTRACT

Multiprocessor interconnection network have become
powerful parallel computing system for real-time
applications. Now a days the many researchers doing
research on the dynamic load scheduling in
multiprocessor system. Load balancing is the method
of dividing the total load among the processors of the
distributed system to progress task's response time as
well as resource utilization whereas ignoring a
condition where few processors are overloaded or
under loaded or moderately loaded. However, in
dynamic load balancing algorithm presumes no priori
information about behavior of tasks or the global state
of the system. There are numerous issues while
designing an efficient dynamic load balancing
algorithm that involves utilization of system, amount
of information transferred among processors,
selection of tasks for migration, load evaluation,
comparison of load levels and many more. This paper
enlightens the performance analysis on dynamic load
balancing strategy (DLBS) algorithm, used for
hypercube network in multiprocessor system.
Dynamic load scheduling (DLB) algorithm are
required to efficiently solve this problems on
multiprocessor systems.

In this paper our focus on study and evaluation of
various dynamic load balancing strategies such as
SID, RID,DEM ,GM HBM etc.

KEYWORD: Interconnection network, Parallel
processing, Multiprocessor System, Load Balancing,
Scheduling Algorithm, knowledge over head,
threshold

I. Introduction

In computing, load balancing improves the
distribution of workloads across multiple computing

resources, such as computers, a computer cluster,
network links, central processing units, or disk
drives[1]. Load balancing aims to optimize resource
use, maximize throughput, minimize response time,
and avoid overload of any single resource. Using
multiple components with load balancing instead of a
single component may increase reliability and
availability through redundancy. Load balancing
usually involves dedicated software or hardware, such
as a multilayer switch or a Domain Name System
server process.

When adaptive algorithms are used, after an interval
of computation, the mesh may be refined (or
coarsened) at some locations, usually based on an
estimate of the discretization error. The refinement (or
coarsening) process can generate widely varying
numbers of mesh nodes on the processors.
Subsequently, there is a need for dynamic load
balancing. Load imbalance may also be caused by the
use of local time stepping, local spatial approximation
schemes of varying orders [2], or non-linear material
properties.

Load balancing differs from channel bonding in that
load balancing divides traffic between network
interfaces on a network socket (OSI model layer 4)
basis, while channel bonding implies a division of
traffic between physical interfaces at a lower level,
either per packet (OSI model Layer 3) or on a data
link (OSI model Layer 2) basis with a protocol like
shortest path bridging.

The tradeoff between knowledge and overhead is
illustrated, by example, with five different DLS
schemes. The schemes presented vary in the amount
of processing and communication overhead and in the
degree of knowledge used in making balancing
decisions. The load balancing overhead includes the

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470 www.ijtsrd.com

595
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

communication costs of acquiring load information
and of informing processors of load migration
decisions, and the processing costs of evaluating load
information to determine task transfers[2,4]

Sender Initiated Diffusion (SID)' is a highly
distributed local approach which makes use of near-
neighbor load information to apportion extra load
from heavily loaded processors to underloaded
neighbors in the system. Receiver Initiated Difision
(RID) is the converse of the SID strategy, where
underloaded processors requisition load from heavily
loaded neighbors. Hierarchical Balancing Method
(HBM) is an asynchronous, global, approach which
organizes the system into a hierarchy of subsystems.
Load balancing is initiated at the lowest levels in the
hierarchy with small subsets of processors and
ascends to the highest level which encompasses the
entire system. Gradient Model (GM) [6,15]employs a
gradient map of the proximities of underloaded
processors in the system to guide the migration of
tasks between overloaded and underloaded
processors. Dimension Exchange Method (DEM)
[12,14], is a global, fully synchronous, approach.
Load balancing is performed

II. Example of Dynamic Load Balancing

As a simple example, figure 1 shows a mesh of shape
``A'', partitioned into 8 subdomains. It has been
refined in Figure 1 (b). Due to the mesh refinement
subdomain 1 has more nodes than the other
subdomains.

In general dynamic load balancing algorithms should
satisfy the following objectives:

1.Re-balance the load of each processor with speed
and scalability.

2.Minimize the edge-cut (or more precisely, the
communication cost of the application after the re-
balance)

In order to satisfy the first objective, the dynamic load
balancing algorithm should not only identify what to
migrate efficiently, the amount of data required to be
migrated should also be kept to a minimum. Various
metrics such as TotalV and MaxV [6] have been used
to model and minimize the data migration cost.

One way to re-balance the load is to repartition the
mesh using one of the partitioning algorithms . Indeed
parallel algorithms such as JOSTLE or ParMETIS are
able to partition large mesh very rapidly [7]. For
example, ParMETIS was able to partition a mesh of
the order of 1 million nodes in less than 2 seconds on
128 PEs of a Cray T3D [8]. However it is important,
but difficult, to ensure that the new partitioning will
be ``close'' to the original partitioning. Should the new
partitioning deviate considerably from the old one
then the cost of transferring large amounts of data will
be incurred[8]. It has been found that repartitioning is
more appropriate when there has been a substantial
localized refinement on the mesh

An alternative strategy is to migrate the excessive
nodes to neighboring processors, effectively shifting
the boundaries to achieve a balanced load. This
approach may potentially cause less movement of
data than repartitioning, although the edge-cut after
the migration could possibly be larger than that given
by a global repartitioning. Therefore care must be
taken to keep edge-cut down when choosing the nodes
to be migrated. It has been found [12] that this
strategy is more suitable when the load imbalances
caused by the refinement are low, or when localized
high imbalances occur throughout the mesh. This is
because in such cases the optimal partition will be
relatively close to the initial partition.

III Categories of Dynamic Load Balancing

A. Client-side random load balancing
Another approach to load balancing is to deliver a list
of server IPs to the client, and then to have client
randomly select the IP from the list on each
connection. This essentially relies on all clients
generating similar loads, and the Law of Large
Numbers to achieve a reasonably flat load distribution
across servers. It has been claimed that client-side
random load balancing tends to provide better load

International Journal of Trend in Scientific Research and Development, Volume 1(

IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

distribution than round-robin DNS; this has been
attributed to caching issues with round
that in case of large DNS caching servers, tend to
skew the distribution for round-robin DNS, while
client-side random selection remains unaffected
regardless of DNS caching.

With this approach, the method of deli
IPs to the client can vary, and may be implemented as
a DNS list (delivered to all the clients without any
round-robin), or via hard coding it to the list. If a
"smart client" is used, detecting that randomly
selected server is down and connecting randomly
again, it also provides fault tolerance.

B. Server-side load balancers

For Internet services, server-side load balancer is
usually a software program that is listening on
the port where external clients connect to access
services. The load balancer forwards requests to one
of the "backend" servers, which usually replies to the
load balancer. This allows the load balancer to reply
to the client without the client ever knowing about the
internal separation of functions. It also prevents
clients from contacting back-end servers directly,
which may have security benefits by hiding the
structure of the internal network and preventing
attacks on the kernel's network stack or unrelated
services running on other ports.

Some load balancers provide a mechanism for doing
something special in the event that all backend servers
are unavailable. This might include forwarding to a
backup load balancer, or displaying a message
regarding the outage.

IV Types of Dynamic Load Balancing Algorithm

A. Diffusion algorithm

One of the most popular approaches to the flow
calculation problem is to use diffusion based
algorithms [6,14]. In a heat diffusion process, the
initial uneven temperature distribution in space causes
the movement of heat, and the system eventually
reaches a steady-state temperature.

The diffusion algorithm, as described in [
as follows. At each iteration k+1 of the algorithm,
processor will send an amount proportional to the
difference between its load and its neighbor's

load, , to its neighbor j Assume

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456

robin DNS; this has been
ed to caching issues with round-robin DNS,

that in case of large DNS caching servers, tend to
robin DNS, while

side random selection remains unaffected

With this approach, the method of delivery of list of
IPs to the client can vary, and may be implemented as
a DNS list (delivered to all the clients without any

coding it to the list. If a
"smart client" is used, detecting that randomly

necting randomly

side load balancer is
usually a software program that is listening on

where external clients connect to access
balancer forwards requests to one

of the "backend" servers, which usually replies to the
load balancer. This allows the load balancer to reply
to the client without the client ever knowing about the
internal separation of functions. It also prevents

end servers directly,
which may have security benefits by hiding the
structure of the internal network and preventing
attacks on the kernel's network stack or unrelated

mechanism for doing
something special in the event that all backend servers
are unavailable. This might include forwarding to a
backup load balancer, or displaying a message

IV Types of Dynamic Load Balancing Algorithm

One of the most popular approaches to the flow
calculation problem is to use diffusion based

]. In a heat diffusion process, the
initial uneven temperature distribution in space causes
the movement of heat, and the system eventually

e diffusion algorithm, as described in [6], is given
of the algorithm,

will send an amount proportional to the
s load and its neighbor's

j Assume Cij=Cji,

the new load li(k+1) of the processor
combination of its own load
from/to its neighboring vertices, namely

Initially the load for vertex
form, the above equation can be rewritten as

where is a diagonal matrix of the size
that consists of the coefficients

of size , to be defined in Section
choice of the coefficients, Boillat [

The diffusion algorithm, being
method of the form (11), can converge quite slowly
on graphs with small connectivity. Boillat [
that the worst case happens when the graph is, say, a
line, and in such a case the number of iterations
needed to reach a given tolerance is
number of vertices. There are other variations of the
diffusion algorithm ([]).A special case of the
following equation,

is solved in []. The convergence of the diffusion
algorithm can also be improved using the Chebyshev
polynomial [9]. Many investigations of dynamic load
balancing algorithms have used a diffusive approach,
although the details vary. For example, in both the
tiling algorithm and the iterative tree balancing
algorithm [11], a processor selects amongst its
neighbors the one with the highest load and posts a
request. In the tiling algorithm the amount of load t
be sent is decided by looking at the average of the
loads in the neighborhood. In the iterative tree
balancing algorithm the requests are viewed as a
forest of trees. The flow along the branches of the tree
is then calculated using a logarithmic time par
scan operation.

There are two type of diffusion algorithm

2456-6470 www.ijtsrd.com

596

of the processor is given by the
combination of its own load li(k) and contributions
from/to its neighboring vertices, namely

(1)

 is . In matrix
form, the above equation can be rewritten as

(2)

is a diagonal matrix of the size ,
that consists of the coefficients Cij, and is a matrix

, to be defined in Section 4.3.4. For the
choice of the coefficients, Boillat [6] suggested

The diffusion algorithm, being a stationary iterative
), can converge quite slowly

on graphs with small connectivity. Boillat [6] proved
that the worst case happens when the graph is, say, a
line, and in such a case the number of iterations
needed to reach a given tolerance is O(p2) with p, the
number of vertices. There are other variations of the

([]).A special case of the

is solved in []. The convergence of the diffusion
algorithm can also be improved using the Chebyshev

Many investigations of dynamic load
balancing algorithms have used a diffusive approach,
although the details vary. For example, in both the
tiling algorithm and the iterative tree balancing
algorithm [11], a processor selects amongst its
neighbors the one with the highest load and posts a
request. In the tiling algorithm the amount of load to
be sent is decided by looking at the average of the
loads in the neighborhood. In the iterative tree
balancing algorithm the requests are viewed as a
forest of trees. The flow along the branches of the tree
is then calculated using a logarithmic time parallel

There are two type of diffusion algorithm

International Journal of Trend in Scientific Research and Development, Volume 1(

IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

1. Sender Initiated Diffusion (SID)

The SID strategy is a, local, near-neighbor
approach which employs overlapping balancing
domains to achieve global balancing. for an
processor system with a total system load
diffusion approach, such as the SID strategy, will
cause each processor’s load to converge to
[1,7,8]

Balancing is performed by each processor whenever it
receives a load update message from a neighbor
indicating that the neighbors load, 1i<Ideal Load
where Ideal Load is a preset threshold. Each
processor is limited to load information from within
its own domain, which consists of itself and its
immediate neighbors

2. Receiver Initiated Diffusion (RID)

(1) First, the balancing process is initiated by
any processor whose load drops below a
pre specified threshold (L L o w

(2) Second, upon receipt of a load request, a
processor will fulfill the request only up
to an amount equal to half of its current
load

(3) The RID strategy differs from its
counterpart SID in the task migration
phase. Here, an underloaded processor
first sends out requests for load and then
receives acknowledgment for each request

B. Dimension Exchange Algorithm

Cybenko suggested a dimension exchange algorithm,
in which the edges of the graph are colored so that no
two edges of the same color share a vertex. Pairs of
processors having the same color were grouped and a
processor pair (i, j) with load li and lj exchange their
load, after which each has the load
algorithm was proved to converge in
graph considered was a hypercube with dimension
Xu and Lau [10] extended the dimension exchange
algorithm so that after the exchange processor
load li*a+lj*(1-a). If a=0.5 this is equivalent to
Cybenko's algorithm. Based on an eigen value
analysis of the underlining iterative matrices, they
argued that for some graph a factor
than 0.5 gives better convergence. On a graph with
small connectivity, this algorithm suffers in

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456

neighbor diffusion
approach which employs overlapping balancing
domains to achieve global balancing. for an N
processor system with a total system load L, a
diffusion approach, such as the SID strategy, will
cause each processor’s load to converge to L/N.

Balancing is performed by each processor whenever it
receives a load update message from a neighbor

<Ideal Load ,
preset threshold. Each

processor is limited to load information from within
its own domain, which consists of itself and its

First, the balancing process is initiated by
any processor whose load drops below a

L o w) . [7,8]
a load request, a

processor will fulfill the request only up
to an amount equal to half of its current

The RID strategy differs from its
in the task migration

phase. Here, an underloaded processor
first sends out requests for load and then
receives acknowledgment for each request

dimension exchange algorithm,
in which the edges of the graph are colored so that no
two edges of the same color share a vertex. Pairs of
processors having the same color were grouped and a

exchange their
ter which each has the load (li+lj)/2. The

 steps if the
graph considered was a hypercube with dimension d.
Xu and Lau [10] extended the dimension exchange
algorithm so that after the exchange processor has

this is equivalent to
Cybenko's algorithm. Based on an eigen value
analysis of the underlining iterative matrices, they
argued that for some graph a factor other

gives better convergence. On a graph with
is algorithm suffers in

convergence in the same way as the diffusion
algorithm.

C. Multilevel Algorithm

To speedup the diffusion algorithm, Horton []
suggested a multilevel diffusion method. The
processor graph was bisected and the load imbalance
between the two subgraphs was determined and
transferred. This process was repeated recursively
until the subgraphs could not be bisected any more.
The advantage of the algorithm is that it is guaranteed
to converge in log(p) bisections, and the final load
will be almost exactly balanced even if the loads are
integers. However, because it is not always possible to
bisect a connected graph into two connected
subgraphs, it was not clear from the paper how to
proceed for such a case. Connectivity can of course be
restored by adding new edges to a disconnected
subgraph. However this is equivalent to moving data
between non-neighboring processors and should be
avoided.

Linear programming based algorithms

A possibly better model [] of the communication cost
in the migration process, as opposed to (3), is the
maximum cost of load migration over all processors,
that is

Here t0 is the communication latency and
subsequent cost of communication per word. The flow
calculation problem then becomes

which is equivalent to

However it is not clear that an efficient parallel
algorithm exists for such a linear programming
problem.

2456-6470 www.ijtsrd.com

597

convergence in the same way as the diffusion

To speedup the diffusion algorithm, Horton []
suggested a multilevel diffusion method. The
processor graph was bisected and the load imbalance

the two subgraphs was determined and
transferred. This process was repeated recursively
until the subgraphs could not be bisected any more.
The advantage of the algorithm is that it is guaranteed

bisections, and the final load
almost exactly balanced even if the loads are

integers. However, because it is not always possible to
bisect a connected graph into two connected
subgraphs, it was not clear from the paper how to
proceed for such a case. Connectivity can of course be

ored by adding new edges to a disconnected
subgraph. However this is equivalent to moving data

neighboring processors and should be

Linear programming based algorithms

A possibly better model [] of the communication cost
on process, as opposed to (3), is the

maximum cost of load migration over all processors,

is the communication latency and is the
subsequent cost of communication per word. The flow
calculation problem then becomes

(3)

However it is not clear that an efficient parallel
algorithm exists for such a linear programming

International Journal of Trend in Scientific Research and Development, Volume 1(

IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

Similar linear programming based flow calculation
were proposed in [], where the problem

was solved. Here is the number of
subdomain that may be moved to sub domain
using a node selection strategy based on layering (see
the next section). This linear programming problem
was solved using the simplex method to give the flow.
The problem has 2|E| variables and |V|+|E|
A multilevel approach was used to group subdomains
into super-partitions, thereby breaking the linear
programming problem into smaller ones to be solved
by subsets of processors. This reduced the overall
complexity of solving the linear
problem.

D. Hierarchical Balancing Method (HBM)

It is an asynchronous global, approach which
organizes the system into a hierarchy of subsystems.
[1,7] • Load balancing is initiated at the lowest levels
in the hierarchy with small subsets of p
ascends to the highest level which encompasses the
entire system. • Specific processors are designated to
control the balancing operations at different levels of
the hierarchy.

The hierarchical balancing scheme functions
asynchronously. The balancing process is triggered at
different levels in the hierarchy by the receipt of load

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456

Similar linear programming based flow calculation

is the number of vertices on
that may be moved to sub domain j,

using a node selection strategy based on layering (see
the next section). This linear programming problem
was solved using the simplex method to give the flow.

|+|E| constraints.
A multilevel approach was used to group subdomains

partitions, thereby breaking the linear
programming problem into smaller ones to be solved
by subsets of processors. This reduced the overall
complexity of solving the linear programming

D. Hierarchical Balancing Method (HBM)

It is an asynchronous global, approach which
organizes the system into a hierarchy of subsystems.
[1,7] • Load balancing is initiated at the lowest levels
in the hierarchy with small subsets of processors and
ascends to the highest level which encompasses the
entire system. • Specific processors are designated to
control the balancing operations at different levels of

eme functions
balancing process is triggered at

different levels in the hierarchy by the receipt of load

update messages indicating an imbalance
lower level domains. All load levels are initialized
with each processor sending its load information up
the tree

E. The Gradient Model (GM)

The gradient model [5,13] is a demand driven
approach .The basic concept is that underloaded
processors inform other processors in the system of
their state, and overloaded processors respond by
sending a portion of their load to t
loaded processor in the system.

This model employs a gradient map of the proximities
of underloaded processors in the system to guide the
migration of tasks between overloaded and
underloaded processors.

The resulting effect is a form of
tasks migrating through the system are guided by the
proximity gradient and gravitate
points. The scheme is based on two threshold
parameters: the Low-Water-
High- Water-Mark (HWM). A processor’s stat
considered light if its load is below the LWM, heavy
if above the HWM, and moderate otherwise.

F. Central Queue Algorithm:

This algorithm stores new activity and unfulfilled
requests in a cyclic FIFO queue. Each new activity is
inserted in the queue. Then, whenever a request for an
activity is received the first activity is removed from
the queue. If there is not any requested activity in the
queue then the request is buffered until a new activity
is available. This is a centralized initiated algorith
and need high communication among nodes.

G. Local Queue Algorithm:

This algorithm supports inter process migration. This
idea is static allocation of all new process with
process migration initiated by the host when its load
falls under the predefined minimum number of ready
processes. When the host gets under load it request for
the activities from the remote hosts. The remote hosts
than look up its local list for ready activities and some
of the activities are passed on to the requestor host
and get the acknowledgement from the host. This is a
distributed co-operative algorithms requires inter
process communication but lesser as compared to
central queue algorithm.

2456-6470 www.ijtsrd.com

598

update messages indicating an imbalance between
All load levels are initialized

with each processor sending its load information up

The Gradient Model (GM)

The gradient model [5,13] is a demand driven
approach .The basic concept is that underloaded
processors inform other processors in the system of
their state, and overloaded processors respond by
sending a portion of their load to the nearest lightly
loaded processor in the system.

This model employs a gradient map of the proximities
of underloaded processors in the system to guide the
migration of tasks between overloaded and

The resulting effect is a form of relaxation where
tasks migrating through the system are guided by the
proximity gradient and gravitate towards underloaded
points. The scheme is based on two threshold

-Mark (LWM) and the
Mark (HWM). A processor’s state is

considered light if its load is below the LWM, heavy
if above the HWM, and moderate otherwise.

F. Central Queue Algorithm:

This algorithm stores new activity and unfulfilled
requests in a cyclic FIFO queue. Each new activity is

Then, whenever a request for an
activity is received the first activity is removed from
the queue. If there is not any requested activity in the
queue then the request is buffered until a new activity
is available. This is a centralized initiated algorithm
and need high communication among nodes.

This algorithm supports inter process migration. This
idea is static allocation of all new process with
process migration initiated by the host when its load

minimum number of ready
processes. When the host gets under load it request for
the activities from the remote hosts. The remote hosts
than look up its local list for ready activities and some
of the activities are passed on to the requestor host

he acknowledgement from the host. This is a
operative algorithms requires inter

process communication but lesser as compared to

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470 www.ijtsrd.com

599
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

H. Least Connection Algorithm : This algorithm
decides the load distribution on the basis of
connections present on a node. The load balancer
maintains the log of numbers of connections on each
node. The number increases when a new connection is
established and decreases when connection finishes or
time out. The nodes with least number of connections
are selected first.

V Features of Load Balancer

Hardware and software load balancers may have a
variety of special features. The fundamental feature of
a load balancer is to be able to distribute incoming
requests over a number of backend servers in the
cluster according to a scheduling algorithm. Most of
the following features are vendor specific:

Asymmetric load: A ratio can be manually assigned
to cause some backend servers to get a greater share
of the workload than others. This is sometimes used
as a crude way to account for some servers having
more capacity than others and may not always work
as desired.

Priority activation: When the number of available
servers drops below a certain number, or load gets too
high, standby servers can be brought online.

SSL Offload and Acceleration: Depending on the
workload, processing the encryption and
authentication requirements of an SSL request can
become a major part of the demand on the Web
Server's CPU; as the demand increases, users will see
slower response times, as the SSL overhead is
distributed among Web servers. To remove this
demand on Web servers, a balancer can terminate
SSL connections, passing HTTPS requests as HTTP
requests to the Web servers. If the balancer itself is
not overloaded, this does not noticeably degrade the
performance perceived by end users. The downside of
this approach is that all of the SSL processing is
concentrated on a single device (the balancer) which
can become a new bottleneck. Some load balancer
appliances include specialized hardware to process
SSL. Instead of upgrading the load balancer, which is
quite expensive dedicated hardware, it may be
cheaper to forgo SSL offload and add a few Web
servers. Also, some server vendors such as
Oracle/Sun now incorporate cryptographic
acceleration hardware into their CPUs such as the
T2000. F5 Networks incorporates a dedicated SSL

acceleration hardware card in their local traffic
manager (LTM) which is used for encrypting and
decrypting SSL traffic. One clear benefit to SSL
offloading in the balancer is that it enables it to do
balancing or content switching based on data in the
HTTPS request.

Distributed Denial of Service (DDoS) attack
protection: load balancers can provide features such
as SYN cookies and delayed-binding (the back-end
servers don't see the client until it finishes its TCP
handshake) to mitigate SYN flood attacks and
generally offload work from the servers to a more
efficient platform.

HTTP compression: reduces amount of data to be
transferred for HTTP objects by utilizing gzip
compression available in all modern web browsers.
The larger the response and the further away the client
is, the more this feature can improve response times.
The tradeoff is that this feature puts additional CPU
demand on the load balancer and could be done by
web servers instead.

TCP offload: different vendors use different terms
for this, but the idea is that normally each HTTP
request from each client is a different TCP
connection. This feature utilizes HTTP/1.1 to
consolidate multiple HTTP requests from multiple
clients into a single TCP socket to the back-end
servers.

TCP buffering: the load balancer can buffer
responses from the server and spoon-feed the data out
to slow clients, allowing the web server to free a
thread for other tasks faster than it would if it had to
send the entire request to the client directly.

Direct Server Return: an option for asymmetrical
load distribution, where request and reply have
different network paths.

Health checking: the balancer polls servers for
application layer health and removes failed servers
from the pool.

HTTP caching: the balancer stores static content so
that some requests can be handled without contacting
the servers.

Content filtering: some balancers can arbitrarily
modify traffic on the way through.

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470 www.ijtsrd.com

600
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

HTTP security: some balancers can hide HTTP error
pages, remove server identification headers from
HTTP responses, and encrypt cookies so that end
users cannot manipulate them.

Priority queuing: also known as rate shaping, the
ability to give different priority to different traffic.

Content-aware switching: most load balancers can
send requests to different servers based on the URL
being requested, assuming the request is not encrypted
(HTTP) or if it is encrypted (via HTTPS) that the
HTTPS request is terminated (decrypted) at the load
balancer.

Client authentication: authenticate users against a
variety of authentication sources before allowing them
access to a website.

Programmatic traffic manipulation: at least one
balancer allows the use of a scripting language to
allow custom balancing methods, arbitrary traffic
manipulations, and more.

Firewall: direct connections to backend servers are
prevented, for network security reasons Firewall is a
set of rules that decide whether the traffic may pass
through an interface or not.

Intrusion prevention system: offer application layer
security in addition to network/transport layer offered
by firewall security.

VI. MODEL FOR DYNAMIC LOAD
SCHEDULING APPROACH

We have developed a general model for dynamic load
balancing.

This model is organized as a four phase process[6,13]

(1) Processor load evaluation
(2) Load balancing profitability Determination
(3) Task migration strategy

(4) Task selection strategy

A. Processor Load Evaluation
• A load value is estimated for each processor in

the system.

• These values are used as input to the load
balancer to detect load imbalances and make
load migration decisions.

B. Load Balancing Profitability Determination:
• The imbalance factor quantifies the degree of

load imbalance within a processor domain.

• It is used as an estimate of potential speedup
obtainable through load balancing

• It is weighed against the load balancing
overhead to determine whether or not load
balancing is profitable at that time.

C. Task Migration Strategy:
Sources and destinations for task migration are
determined. Sources are notified of the
quantity and destination of tasks for load
balancing.

D. Task Selection Strategy:
 Source processors select the most suitable
tasks for efficient and effective load balancing
and send them to the appropriate destinations.

• The first and fourth phases of the model are
application dependent and purely distributed.
Both of these phases can be executed
independently on each individual processor.

• Our focus is on the Profitability Determination
and Task Migration phases, the second and
third phases, of the load balancing process

• As the program execution evolves, the
inaccuracy of the task requirement estimates
leads to unbalanced load distributions.

• The imbalance must be detected and measured
(Phase 2) and an appropriate migration
strategy devised to correct the imbalance
(Phase 3).

• During the Profitability Determination Phase a
decision is made as to whether or not to
invoke the load balancer.

• The load imbalance factor Ф(t) is an estimate
of the potential speedup obtainable through
load balancing at time t .

• It is defined as the difference between the
maximum processor loads before and after
load balancing, Lmax and Lbal , respectively.
 Ф(t)= Lmax - Lbal

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470 www.ijtsrd.com

601
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

VII CONCLUSIONS

In this paper, dynamic load balancing strategies
designed to support highly parallel systems have been
presented and compared. The different strategies
exemplify some of the main issues and tradeoffs that
exist in dynamic load balancing, specifically in
reference to highly parallel systems. Two major
issues, that of load balancing overhead and the degree
of knowledge used in balancing decisions were
discussed. Also considered were, the concept of
balancing domains, the aging of information, and the
form of balancing initiation. Of the five strategies
proposed, the DEM strategy tended to outperform the
rest for all granularities. The efficiency of the DEM
and the HBM strategies, depends heavily on the
system interconnection topology. The hypercube
topology is ideally suited to match these two
strategies communication dependencies. Further-
more, the system sizes tested were very small in the
context of highly parallel systems. The overhead of
synchronization costs [scale as O(NlogN)] for the
DEM approach and the aging period and non uniform
overhead distributions of the HBM approach may
deteriorate their performance when the number of
processors is large (1000 processors). The RID
strategy, on the other hand, is easily ported to simpler
topologies, and can scale gracefully for larger
systems. Finally, for a wider variety of applications,
exhibiting local communication dependencies
between tasks, the RID scheme is able to maintain
task locality. Therefore, since its performance was
shown to be comparable to those of the DEM and
HBM approaches, the RID strategy may be best suited
for a broader range of systems supporting a large
variety of applications

REFERENCES

[1] U. Karthick Kumar, "A Dynamic Load Balancing
Algorithm in Computational Grid Using Fair
Scheduling", International Journal of Computer
Science Issues, Volume 8 ,Issue 5, September 2011.

 [2] Bin Lu, Hongbin Zhang, "Grid Load Balancing
Scheduling Algorithm Based on Statistics
Thinking",9th International Conference for Young
Computer Scientists,IEEE,2008.

[3] V.P Narkhede, S.T. Khandare, "Fair Scheduling
Algorithm with Dynamic Load Balancing Using in

Grid Computing", International Journal of
Engineering and Science, Volume 2, Issue 10, April
2013.

 [4] Fahd Alharbi, "Simple Scheduling Algorithm
with Load Balancing for Grid Computing", Asian
Transactions on Computers, Volume 2, Issue 2, May
2012.

 [5] Junwei Cao, Daniel P. Spooner, Stephen A Jarvis,
Graham R. Nudd, "Grid Load Balancing
UsingIntelligent Agents", ACM, Volume 21, Issue 1,
January 2005.

[6] Mohammad Haroon, Mohammad Husain,
"Analysis of a Dynamic Load Balancing in
Multiprocessor System", International Journal of
Computer Science engineering and Information
Technology Research, Volume 3, Issue 1, March
2013.

[7] Abhijit A. Rajguru, S.S. Apte, "A Comparative
Performance Analysis of Load Balancing Algorithms
in Distributed System using Qualitative Parameters",
International Journal of recent Technology and
Engineering, Volume 1, Issue 3, August 2012.

[8] Urjashree Patil, Rajashree Shedge, "Improved
Hybrid Dynamic Load Balancing Algorithm for
Distributed Environment", International Journal of
Scientific and Research Publications, Volume 3, Issue
3, March 2013.

[9] M.A. Alam, K. Varshney, “A comparative study
of interconnection network” Int. J. Comput. Appl.,
127 (4) (2015), pp. 37-43

[10] M. Alam, A.K. Varshney A new approach of
dynamic load balancing scheduling algorithm for
homogeneous multiprocessor systemInt. J. Appl.
Evol. Comput., 7 (2) (2016), pp. 61-75

[11] M. Alam, A. Khan, A.K. Varshney A review on
dynamic scheduling algorithms for homogeneous and
heterogeneous system Proceedings of the Springer
International Conference of Computer Society of

 India (CSI) of Transactions on ICT (2016)(in press)

[12] M. Dobber, R.V.D. Mei, G. Koole Dynamic load
balancing and job replication in a global-scale grid
environment: a comparisonIEEE Trans. Parallel
Distrib. Syst., 20 (2) (2009), pp. 207-218

International Journal of Trend in Scientific Research and Development, Volume 1(4), ISSN: 2456-6470 www.ijtsrd.com

602
IJTSRD | May-Jun 2017
Available Online @www.ijtsrd.com

[13] D. Jain, S.C. Jain Load balancing real-time
periodic task scheduling algorithm for multiprocessor
environment”,In Circuit, Power and Computing
Technologies (ICCPCT), International Conference on
IEEE (2015), pp. 1-5

[14] Z.A. Khan, J. Siddiqui, A. Samad A novel
multiprocessor architecture for massively parallel
System” Parallel, Distributed and Grid Computing
(PDGC), International Conference on IEEE (2014),
pp. 466-471

[14] W.M.H. LeMair, A.P. Reeves Strategies for
dynamic load balancing on highly parallel computers
IEEE Trans. Parallel Distrib. Syst., 4 (9) (1993), pp.
979-992

[15] K. Singh, M. Alam, S.K. Sharma A survey of
static scheduling algorithm for distributed computing
system”’ Int. J. Comput. Appl., 129 (2) (2015), pp.
25-30

