

International Journal of Trend in Scientific Research and Development (IJTSRD)
 International Open Access Journal | www.ijtsrd.com

 ISSN No: 2456 - 6470 | Volume - 3 | Issue – 1 | Nov – Dec 2018

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018 Page: 268

Data Structure: Theoretical Approach

Durgesh Raghuvanshi
B-Tech Department of Computer Science,

IILM Academy of Higher Learning, Greater Noida, Uttar Pradesh, India

ABSTRACT

Run with accordance with significance. The first if

these this paper explains about the basic terminologies

used in this paper in data structure. Better running

times will be other constraints, such as memory use

which will be paramount. The most appropriate data

structures and algorithms rather than through hacking

removing a few statements by some clever coding.

Data structures serve as the basis for abstract data

types (ADT). "The ADT defines the logical form of

the data type. The data structure implements the

physical form of the data type."Different types of data

structures are suited to different kinds of applications,

and some are highly specialized to specific tasks. For

example, relational databases commonly use B-tree

indexes for data retrieval, while compiler

implementations usually use hash tables to look up

identifiers.

INTRODUCTION:

Data structures serve as the basis for abstract data

types (ADT). "The ADT defines the logical form of

the data type. The data structure implements the

physical form of the data type."Different types of data

structures are suited to different kinds of applications,

and some are highly specialized to specific tasks. For

example, relational databases commonly use B-tree

indexes for data retrieval, while compiler

implementations usually use hash tables to look up

identifiers. Data structures provide a means to manage

large amounts of data efficiently for uses such as large

databases and internet indexing services. Usually,

efficient data structures are key to designing efficient

algorithms. Some formal design methods and

programming languages emphasize data structures,

rather than algorithms, as the key organizing factor in

software design. Data structures can be used to

organize the storage and retrieval of information

stored in both main memory and secondary memory.

Data structures are generally based on the ability of a

computer to fetch and store data at any place in its

memory, specified by a pointer—a bit string,

representing a memory address, that can be itself

stored in memory and manipulated by the program.

Thus, the array and record data structures are based on

computing the addresses of data items with arithmetic

operations, while the linked data structures are based

on storing addresses of data items within the structure

itself. Many data structures use both principles,

sometimes combined in non-trivial ways (as in XOR

linking).[citation needed]

The implementation of a data structure usually

requires writing a set of procedures that create and

manipulate instances of that structure. The efficiency

of a data structure cannot be analyzed separately from

those operations. This observation motivates the

theoretical concept of an abstract data type, a data

structure that is defined indirectly by the operations

that may be performed on it, and the mathematical

properties of those operations (including their space

and time cost).[citation needed]An array is a number

of elements in a specific order, typically all of the

same type (depending on the language, individual

elements may either all be forced to be the same type,

or may be of almost any type). Elements are accessed

using an integer index to specify which element is

required. Typical implementations allocate contiguous

memory words for the elements of arrays (but this is

not necessity). Arrays may be fixed-length or

resizable. A linked list (also just called list) is a linear

collection of data elements of any type, called nodes,

where each node has itself a value, and points to the

next node in the linked list. The principal advantage

of a linked list over an array, is that values can always

be efficiently inserted and removed without relocating

the rest of the list. Certain other operations, such as

random access to a certain element, are however

slower on lists than on arrays. Most assembly

http://www.ijtsrd.com/
http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018 Page: 269

languages and some low-level languages, such as

BCPL (Basic Combined Programming Language),

lack built-in support for data structures. On the other

hand, many high-level programming languages and

some higher-level assembly languages, such as

MASM, have special syntax or other built-in support

for certain data structures, such as records and arrays.

Sequential search

When data items are stored in a collection such as a

list, we say that they have a linear or sequential

relationship. Each data item is stored in a position

relative to the others. In Python lists, these relative

positions are the index values of the individual items.

Since these index values are ordered, it is possible for

us to visit them in sequence. This process gives rise to

our first searching technique, the sequential search.

Starting at the first item in the list, we simply move

from item to item, following the underlying sequential

ordering until we either find what we are looking for

or run out of items. If we run out of items, we have

discovered that the item we were searching for was

not present.

Algorithm complexity

Algorithm Best case Expected

Selection sort O(N2) O(N2)

Merge sort O(NlogN) O(NlogN)

Linear search O(1) O(N)

Binary search O(1) O(logN)

Depth of node

The depth of node is the length of the path from the

root to the node. A rooted tree with only one node has

a depth of zero.

Threaded binary tree

In a threaded binary tree all the null pinters which

wasted the space in linked representation is converted

into useful links called threads thus representation of a

binary tree using these threads is called threaded

binary tree.

Analysis of sequential search

To analyze searching algorithms, we need to decide

on a basic unit of computation. Recall that this is

typically the common step that must be repeated in

order to solve the problem. For searching, it makes

sense to count the number of comparisons performed.

Each comparison may or may not discover the item

we are looking for. In addition, we make another

assumption here. The list of items is not ordered in

any way. The items have been placed randomly into

the list. In other words, the probability that the item

we are looking for is in any particular position is

exactly the same for each position of the list.

If the item is not in the list, the only way to know it is

to compare it against every item present. If there are

\(n\) items, then the sequential search requires \(n\)

comparisons to discover that the item is not there. In

the case where the item is in the list, the analysis is

not so straightforward. There are actually three

different scenarios that can occur. In the best case we

will find the item in the first place we look, at the

beginning of the list. We will need only one

comparison. In the worst case, we will not discover

the item until the very last comparison, the nth

comparison.

Binary search

Binary search is a fast search algorithm with run-time

complexity of Ο(log n). This search algorithm works

on the principle of divide and conquer. For this

algorithm to work properly, the data collection should

be in the sorted form.

Binary search looks for a particular item by

comparing the middle most item of the collection. If a

match occurs, then the index of item is returned. If the

middle item is greater than the item, then the item is

searched in the sub-array to the left of the middle

item. Otherwise, the item is searched for in the sub-

array to the right of the middle item. This process

continues on the sub-array as well until the size of the

sub array reduces to zero. B-trees are generalizations

of binary search trees in that they can have a variable

number of sub trees at each node. While child-nodes

have a pre-defined range, they will not necessarily be

filled with data, meaning B-trees can potentially waste

some space. The advantage is that B-trees do not need

to be re-balanced as frequently as other self-balancing

trees.

Due to the variable range of their node length, B-trees

are optimized for systems that read large blocks of

data. They are also commonly used in databases. A

ternary search tree is a type of tree that can have 3

nodes: a lo kid, an equal kid, and a hi kid. Each node

stores a single character and the tree itself is ordered

the same way a binary search tree is, with the

exception of a possible third node. Searching a ternary

search tree involves passing in a string to test whether

any path contains it. The time complexity for

searching a balanced ternary search tree is O(log n).

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 270

Binary Search Tree, is a node-based binary tree

data structure which has the following properties:

The left subtree of a node contains only nodes with

keys lesser than the node’s key. The right subtree of a

node contains only nodes with keys greater than the

node’s key. The left and right subtree each must also

be a binary search tree. There must be no duplicate

nodes. delete operation is discussed. When we delete

a node, three possibilities arise. 1) Node to be deleted

is leaf: Simply remove from the tree.3) Node to be

deleted has two children: Find in order successor of

the node. Copy contents of the in order successor to

the node and delete the in order successor. Note that

in order predecessor can also be used.2) Node to be

deleted has only one child: Copy the child to the node

and delete the child The important thing to note is, in

order successor is needed only when right child is not

empty. In this particular case, in order successor can

be obtained by finding the minimum value in right

child of the node. Time Complexity: The worst case

time complexity of delete operation is O(h) where h is

height of Binary Search Tree. In worst case, we may

have to travel from root to the deepest leaf Now when

we want to search for an item, we simply use the hash

function to compute the slot name for the item and

then check the hash table to see if it is present. This

searching operation is \(O(1)\), since a constant

amount of time is required to compute the hash value

and then index the hash table at that location. If

everything is where it should be, we have found a

constant time search algorithm.

You can probably already see that this technique is

going to work only if each item maps to a unique

location in the hash table. For example, if the item 44

had been the next item in our collection, it would have

a hash value of 0 (\(44 \% 11 == 0\)). Since 77 also

had a hash value of 0, we would have a problem.

According to the hash function, two or more items

would need to be in the same slot. This is referred to

as a collision (it may also be called a “clash”).

Clearly, collisions create a problem for the hashing

technique. We will discuss them in detail later. We

now return to the problem of collisions. When two

items hash to the same slot, we must have a

systematic method for placing the second item in the

hash table. This process is called collision resolution.

As we stated earlier, if the hash function is perfect,

collisions will never occur. However, since this is

often not possible, collision resolution becomes a very

important part of hashing.

Collision resolution strategies

One method for resolving collisions looks into the

hash table and tries to find another open slot to hold

the item that caused the collision. A simple way to do

this is to start at the original hash value position and

then move in a sequential manner through the slots

until we encounter the first slot that is empty. Note

that we may need to go back to the first slot

(circularly) to cover the entire hash table. This

collision resolution process is referred to as open

addressing in that it tries to find the next open slot or

address in the hash table. By systematically visiting

each slot one at a time, we are performing an open

addressing technique called linear probing. Once the

hash values have been computed, we can insert each

item into the hash table at the designated position as

shown in Figure 5. Note that 6 of the 11 slots are now

occupied. This is referred to as the load factor, and is

commonly denoted by \(\lambda = \frac {number of

items}{table size}\). For this example, \(\lambda =

\frac {6}{11}\).Once we have built a hash table using

open addressing and linear probing, it is essential that

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018 Page: 271

we utilize the same methods to search for items.

When we compute the hash value, we get 5. Looking

in slot 5 reveals 93, and we can return True. What if

we are looking for 20? Now the hash value is 9, and

slot 9 is currently holding 31. We cannot simply

return False since we know that there could have been

collisions. We are now forced to do a sequential

search, starting at position 10, looking until either we

find the item 20 or we find an empty slot. A

disadvantage to linear probing is the tendency for

clustering; items become clustered in the table. This

means that if many collisions occur at the same hash

value, a number of surrounding slots will be filled by

the linear probing resolution. This will have an impact

on other items that are being inserted, as we saw when

we tried to add the item 20 above. A cluster of values

hashing to 0 had to be skipped to finally find an open

position. Hash Functions Given a collection of items,

a hash function that maps each item into a unique slot

is referred to as a perfect hash function. If we know

the items and the collection will never change, then it

is possible to construct a perfect hash function (refer

to the exercises for more about perfect hash

Binary search tree

It is observed that BST's worst-case performance is

closest to linear search algorithms, that is Ο(n). In

real-time data, we cannot predict data pattern and

their frequencies. So, a need arises to balance out the

existing BST.

Named after their inventor Adelson, Velski& Landis,

AVL trees are height balancing binary search tree.

AVL tree checks the height of the left and the right

sub-trees and assures that the difference is not more

than 1. This difference is called the Balance Factor.

Here we see that the first tree is balanced and the next

two trees are not balanced −In the second tree, the left

subtree of C has height 2 and the right subtree has

height 0, so the difference is 2. In the third tree, the

right subtree of A has height 2 and the left is missing,

so it is 0, and the difference is 2 again. AVL tree

permits difference (balance factor) to be only 1.If the

difference in the height of left and right sub-trees is

more than 1, the tree is balanced using some rotation

techniques. In our example, node A has become

unbalanced as a node is inserted in the right subtree of

A's right subtree. We perform the left rotation by

making A the left-subtree of B.

Right Rotation AVL tree may become unbalanced, if

a node is inserted in the left subtree of the left subtree.

The tree then needs a right rotation.AVL Rotations To

balance itself, an AVL tree may perform the

following four kinds of rotations −

Left rotation Right rotation Left-Right rotation Right-

Left rotation The first two rotations are single

rotations and the next two rotations are double

rotations. To have an unbalanced tree, we at least

need a tree of height 2. With this simple tree, let's

understand them one by one.

Left Rotation If a tree becomes unbalanced, when a

node is inserted into the right subtree of the right

subtree, then we perform a single left rotation −Right-

Left Rotation The second type of double rotation is

Right-Left Rotation. It is a combination of right

rotation followed by left rotation. As depicted, the

unbalanced node becomes the right child of its left

child by performing a right rotation.

Left-Right Rotation Double rotations are slightly

complex version of already explained versions of

rotations. To understand them better, we should take

note of each action performed while rotation. Let's

first check how to perform Left-Right rotation. A left-

right rotation is a combination of left rotation

followed by right rotation.

An internal sort is any data sorting process that takes

place entirely within the main memory of a computer.

This is possible whenever the data to be sorted is

small enough to all be held in the main memory. For

sorting larger datasets, it may be necessary to hold

only a chunk of data in memory at a time, since it

won’t all fit. The rest of the data is normally held on

some larger, but slower medium, like a hard-disk.

Any reading or writing of data to and from this slower

media can slow the sortation process considerably.

This issue has implications for different sort

algorithms.

Some common internal sorting algorithms include:

Bubble Sort Insertion Sort Quick Sort Heap Sort

Radix Sort Selection sort Consider a Bubblesort,

where adjacent records are swapped in order to get

them into the right order, so that records appear to

“bubble” up and down through the dataspace. If this

has to be done in chunks, then when we have sorted

all the records in chunk 1, we move on to chunk 2, but

we find that some of the records in chunk 1 need to

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018 Page: 272

“bubble through” chunk 2, and vice versa (i.e., there

are records in chunk 2 that belong in chunk 1, and

records in chunk 1 that belong in chunk 2 or later

chunks). This will cause the chunks to be read and

written back to disk many times as records cross over

the boundaries between them, resulting in a

considerable degradation of performance. If the data

can all be held in memory as one large chunk, then

this performance hit is avoided. On the other hand,

some algorithms handle external sorting rather better.

A Merge sort breaks the data up into chunks, sorts the

chunks by some other algorithm (maybe bubblesort or

Quick sort) and then recombines the chunks two by

two so that each recombined chunk is in order. This

approach minimises the number or reads and writes of

data-chunks from disk, and is a popular external sort

method. It is useful to understand how storage is

managed in different programming languages and for

different kinds of data. Three important cases are:

static storage allocation stack-based storage allocation

heap-based storage allocation Static Storage

Allocation Static storage allocation is appropriate

when the storage requirements are known at compile

time. For a compiled, linked language, the compiler

can include the specific memory address for the

variable or constant in the code it generates. (This

may be adjusted by an offset at link time.) Examples:

code in languages without dynamic compilation all

variables in FORTRAN IV global variables in C, Ada,

Algol constants in C, Ada, Algol Stack-Based Storage

Allocation Stack-based storage allocation is

appropriate when the storage requirements are not

known at compile time, but the requests obey a last-

in, first-out discipline. Examples: local variables in a

procedure in C/C++, Ada, Algol, or Pascal procedure

call information (return address etc).Stack-based

allocation is normally used in C/C++, Ada, Algol, and

Pascal for local variables in a procedure and for

procedure call information. It allows for recursive

procedures, and also allocates data only when the

procedure or function has been called -- but is

reasonably efficient at the same time. Typically a

pointer to the base of the current stack frame is held in

a register, say R0. A reference to a local scalar

variable can be compiled as a load of the contents of

R0 plus a fixed offset. Note that this relies on the data

having known size. To compile a reference to a

dynamically sized object, e.g. an array, use

indirection. The stack contains an array descriptor, of

fixed size, at a known offset from the base of the

current stack frame. The descriptor then contains the

actual address of the array, in addition to bounds

information. References to non-local variables can be

handled by several techniques -- the most common is

using static links. This is beyond the scope of what

we'll cover in 341 this year. Most variable references

are either to local variables or global variables, so

often compilers will handle global variable references

more efficiently than references to arbitrary non-local

variables. Scalar local variables (especially

parameters) can be handled efficiently as they are

often passed through registers.

There are two important limitations to pure stack-

based storage allocation.

First, the only way to return data from a procedure or

function is to copy it -- if you try to simply return a

reference to it, the storage for the date will have

vanished after the procedure or function returns. This

isn't an issue for scalar data (integers, floats,

booleans), but is an issue for large objects such as

arrays. For this reason you can't for example return a

loclly declared array from a function in C. Second,

you can't return a procedure or function as a value, or

assign a procedure or function to a global variable

(procedures or function values aren't first class

citizens).

Comparison between linear search and binary search

Basis for comparison Linear search Binary search

Time complexity O(N) O(𝑙𝑜𝑔2𝑁)

Best case time First element 0(1) Centre element 0(1)

Prerequisite for an array Not required Array must be sorted in order

Worst case for N number of

elements
N comparisons are required Can conclude after only (𝑙𝑜𝑔𝑁)

Can be implemented on Array and linked list Cannot be directly implemented to linked list

Algorithm type Iterative in nature Divide and conquer in nature

Insert operation Easily inserted t end of list
Require processing to insert at its proper place

to maintain a sorted list

Usefulness Easy to use Tricky algorithms

Lines of code less More

http://www.ijtsrd.com/

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 6 | Sep-Oct 2018 Page: 273

Conclusion

This paper covered the basics of data structures. With

this we have only scratched the surface.

Although we have built a good foundation to move

ahead. Data Structures is not just limited to Stack,

Queues, and Linked Lists but is quite a vast area.

There are many more data structures which include

Maps, Hash Tables, Graphs, Trees, etc. Each data

structure has its own advantages and disadvantages

and must be used according to the needs of the

application. A computer science student at least know

the basic data structures along with the operations

associated with them. Many high level and object

oriented programming languages like C#, Java,

Python come built in with many of these data

structures. Therefore, it is important to know how

things work under the hood. Dynamic data structures

require dynamic storage allocation and reclamation.

This may be accomplished by the programmer or may

be done implicitly by a high-level language. It is

important to understand the fundamentals of storage

management because these techniques have

significant impact on the behavior of programs. The

basic idea is to keep a pool of memory elements that

may be used to store components of dynamic data

structures when needed. Allocated storage may be

returned to the pool when no longer needed. In this

way, it may be used and reused. This contrasts sharply

with static allocation, in which storage is dedicated

for the use of static data structures. It cannot then be

reclaimed for other uses, even when no needed for the

static data structure. As a result, dynamic allocation

makes it possible to solve larger problems that might

otherwise be storage-limited. Garbage collection and

reference counters are two basic techniques for

implementing storage management. Combinations of

these techniques may also be designed. Explicit

programmer control is also possible. Potential pitfalls

of these techniques are garbage generation, dangling

references, and fragmentation. High-level language

may take most of the burden for storage management

from the programmer. The concept of pointers or

pointer variables underlies the use of these facilities,

and complex algorithms are required for their

implementation.

References

1. Book of Data structures through C G. S Baluja.

2. Pieren Garry Department of computer science

New York University.

3. Paul Xavier department of algorithms in c

Amsterdam.

4. Surendrakumar Ahuja IItdelhi department of

computer science delhi .

5. Nick jones department of data mining Australia.

6. Wikipedia sequential search.

http://www.ijtsrd.com/

