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ABSTRACT

In this paper, the notion of regular and strong regular L-fuzzy graph is introduced. The conditions for strong
regularity of L-fuzzy graphs on cycle and star graph are derived.
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1. INTRODUCTION

The first definition of fuzzy graph was proposed by Kaufmann [3] using fuzzy relations introduced by
Zadeh[9]. The theory of fuzzy graphs was introduced by Azriel Rosenfeld [7] in 1975. Generalizing the notion
of fuzzy sets, L. Goguen [2] introduced the notion of L-fuzzy sets. Pramada Ramachandran and Thomas [6]
introduced the notion of L-fuzzy graphs and the degree of a vertex in a L-fuzzy graph. This motivated us to
introduce the notion of regular L-fuzzy graphs and strong regular L-fuzzy graphs. Some preliminary, but
primary work has been carried out. Comparison of set magic graphs and L-fuzzy structure introduces a new
platform to work on fuzzy graph.

2. PRELIMINARIES

Definition 2.1: [4] A fuzzy graph G = (o, u ) is a pair of functionso : V - [0,1] and u:V XV — [0,1]
with u(u,v) < o(u) A a(v),Vu,v € V, where V is a finite nonempty set and A denote minimum.

Definition 2.2: [4] The graph G* = (V, E ) is called the underlying crisp graph of the fuzzy graph G, where
V={ufo(w)#o}andE ={(u,v) eV XV Ju(u,v) # 0}.

Definition 2.3: [5] A fuzzy graph G = (o, u ) is defined to be a strong fuzzy graph if

ulu,v) =o(u) A a(v),v (u,v) €EE.
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Definition 2.4: [5] A fuzzy graph G = (o, u ) is defined to be a complete fuzzy graph if

uu,v) =) A c(v),Yyu,vev.

Definition 2.5: [5] Let G = (o, u ) be a fuzzy graphon G* = (V ,E ). The fuzzy degree of anode u € V is
defined as (fd)(u) = Xy »vvevy #(u, v). G is said to be regular fuzzy graph if each vertex has same fuzzy
degree. If (fd)(v) =k,V v €V,then Gis said to be k —regular fuzzy graph.

Definition 2.6: [6] Let (L,V,A) be a complete lattice. A nonempty set V together with a pair of functions o :
V ->Land w:VXV — L withu(u,v) < a(u) A a(v),Vu,v € V, iscalled an L-fuzzy graph. It is denoted
by GL = (V' g, ,U)

Definition 2.7: [6] Let G, = (V, g, u) be an L-fuzzy graph. The L-fuzzy degree d; (u) of a vertex u in G, is
defined as d; (w) = Vy ey uzv #(U, v).

Definition 2.8 : [1] A graph G=(V,E) is said to have a set-magic labeling if its edges can be assigned distinct
subsets of a set X such that for every vertex u of G, the union of the subsets assigned to the edges incident at u
is X.

A graph is said to be a set-magic graph if it admits a set-magic labeling.

3. REGULAR L-FUZZY GRAPH

The above definition of degree in an L-fuzzy graph does not coincide with usual definition of degree in a fuzzy
graph. Any fuzzy graph can be treated as an L-fuzzy graph taking the lattice ( [0,1], < ). Fuzzy degree of a
vertex u, denoted as f,; (u), defined as the sum of u(u,v), whereu € V,u # v.

For further discussion, L-fuzzy degree will be taken into account.

Definition 3.1: Let G, = (V, 0, u) be an L-fuzzy graph. G, is said to be a regular L-fuzzy graph if each vertex
has the same L-fuzzy degree. If d,(v) = k,V v €V, forsome k € L, then G, is called a k — regular L-fuzzy
graph.

Example 3.2 : Let S = {a, b, c} and L= g(S), the power set of S.
Then (L, <) is a complete lattice. Let V = {v;, v,,v3, V4, U5 }
Defineo:V > Land u: VXV - Lbyo(v,) ={a},o(v,) ={a, b} = o(v,),
o(vs) =0(vs) ={a,c}and
uy, va) = vy, v3) = p(vy, vy) = p(vy, v3) = pvs, vs) = p(vs, vy) = {a}.

Thend,(u) = Vy ey uzr #(u,v) ={a},Vu € V. Then G, = (V,0,u) is aregular L-fuzzy graph.

Example 3.3 : Consider the set S and the complete lattice L= g(S) given as in Example 3.2.

LetV={v1,v2,v3}
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Defineg:V » Land u: VXV - Lbyo(v,) ={a,b,c},o(v,) ={a,b},o(vs) ={a,b}and u(vy,v,) = {b},
,U.(UZ, U3) = {a) b}) ,u(v3, vl) = {a} Then GL = (Vr g, ,U_) IS a L-fuzzy graph

Example 3.4 : Consider the set S and g(S) as given in example 3.2.

LetV ={v,,v,,v3,v,,vs }

Defineo:V - Land w:VXV — L by

o(vy)={a},oc(vy,) ={a,b},o(vs) ={a,c},o(v,) ={ab,c},o(vs) ={b,c}and
ny, v3) = u(vy, v3) = u(vy, v3) = p(vy, vy) = {a},

u(s, vs) ={c}, u(vs, vy) ={a,c}, u(vy, vs) = {b,c}

Then G, = (V, g, ) is a non-regular L-fuzzy graph.

Remark : In general, an L-fuzzy graph, G, = (V, 0, 1), Where u is a constant function, is a regular L-fuzzy graph.

Theorem 3.5 : Any set magic graph admits a regular L-fuzzy graph structure.
Proof : Let G=(V,E) be a set magic graph. Then G admits a set magic labeling .

That is , the edges of G can be assigned distinct subsets of a set X such that for every vertex u of G, union of
subsets assigned to the edges incident at u is X.

Let L= g(X), the power set of X. Then (L, € ) is a complete lattice.
Define 0:V — L and u: E — L as follows:
o(v) = X,Vv € Vandu(e) = l(e), forall edges e of G and l(e) € L.
Since, I(e) € X,u(e) <o(u)Ao(v),foralle = (u,v) €EE.
Then, G, = (V, o, ) is an L-fuzzy graph.
Forallue V, dy(u) = Vyeypzuu(u,v)

= Ve=up)vsu ()

= Ve=up)v=ul(€)

=X, (since | is a set magic labeling)

Hence, G, is a regular L-fuzzy graph.
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4. STRONG REGULAR L-FUZZY GRAPH

Definition 4.1 : An L-fuzzy graph G, = (V, 0, u) is said to be a strong regular L-fuzzy graph if u(u,v) = o(u) A
o(v), for all edges (u,v) of G, and the L-fuzzy degree d, (v) is constant, forall v € V.

Example 4.2 : Let S = {a, b, c} and L= g(S), the power set of S. Then (L, € ) is a complete lattice. Let V =

{vi,vy,v3,1, }
Defineg:V - Lbyo(v,) =0(vs) = {a,b,c},0(v,) = 0(v,) = {a,b}and
uy, va) = u(vy, v3) = u(vs, va) = u(vy, v1) ={a,b,ch.
Then G, = (V, g, u) is a strong regular L-fuzzy graph.
Example 4.3 : If ¢ and u are constants in a L-fuzzy graphG,, then G is strong regular L-fuzzy graph.

Remark : If G, is a strong regular L-fuzzy graph, then G, is a regular L-fuzzy graph. However, the converse
need not be true, in general. This is seen from Example 3.3.

Note In [8], it has been proved that no fuzzy graph on a star graph with at least two spokes is strong regular.
But in case of L-fuzzy graph, there exist a strong regular L-fuzzy structure on star graph.

Example 4.3 : Let L= {1,2,3}. (L, <) isacomplete lattice. LetV = {v,v;, vy, V3, v, }
Defineag:V - Lbyo(v) =1,0(v;) =1,0(v,) =2,0(v3)=3,0(v,) =4

and u(v,v;)) =1, i =1,23,4.Then, d,(v,) = d;,(v,) = d,(v3) = d(v,) = 1.
Hence, G, = (V, g, u) is a strong regular L-fuzzy graph on a star graph.

Example 4.4 :Let S = {a, b,c} and L= g(S), the power set of S. (L,< ) isa lattice.

1. Let={v;,v,,v3,14 }
Defineg:V > Lbyo(v, ) ={a,b},0(v,) ={a},o0(v;) ={a,c},o(v,) ={a}and
p(y, v3) = u(vy, v3) = u(vs, vy) = vy, vy) = {a}.
Then, G, = (V, g, u) is strong regular L-fuzzy graph.
2. Let={v,v,,v,,v;v,} Defineo:V — L by
O-(Ul ) = {a, b, C},O'(Vz ) = {a},a(v3 ) = {a, C}, O'(U4,) o {a, b}' O'(U) = {a}
and u(v, v1) = u, v2) = u(, v3) = u, v,) = {a}.
Then, G, = (V,o,u) is a strong regular L-fuzzy graph.

Theorem 4.5 Let G, = (V, g, u) be the L-fuzzy graph.

1. If the underlying graph G is a cycle and if u is a constant say k, for all edges (u,v) and o (u) = k, for
allu eV, then G, is astrong regular L-fuzzy graph.

2. If the underlying graph G; is a star graph with V = { v, v4, v,, ..... v, } and
ifo(v) <o(v),Vi=1,23,....nand u(v,v;) = a(v), for all the edges (v, v;), then
G, is a strong regular L-fuzzy graph.
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Proof

1. Let u = constant = k(say).
Since,o(u) =k, forallu €V, o(u)Aoc(v) =k = u(u,v).
From the definition of L-fuzzy graph, u(u,v) < o(u) A o(v).
Then, u(u, v) = a(u) A o(v).
Also, d,(w) = Vy €V, u#v pw(w,v) = Vy evuzv kK =k, Vu €V,
Hence, G, is strong regular L-fuzzy graph.

2. Leto(v) <o(v),Vi=123,....n.

Therefore, c(v;)) Aa(v) < a(v) = u(v, v;).

From the definition of L-fuzzy graph, u(v,v;) <ow;) A a(v).

Hence, u(v,v;) =o(w)Ao(v;),Vi=12,3,....n.

Now, d,(v;) = V,ep u(v;,v),Vi =1,2,3,.....1n.
=V a(v)
=o(v)

and d;,(v) = Vy,ev (v, v;), Vi =123, .....1n.
=V a(v)
=o(v)

Thus, G is strong regular L-fuzzy graph.

Theorem 4.6 : For any strong regular L-fuzzy graph G, = (V, g, 1) whose crisp graph G; is a path, u is a

constant function.

b1

ey Un_qUp }

Proof LetV ={ vy, v1,Vs, oo, Uy LE(G] ) = {VgV1, V1V5, VaV3, .. ...
o(v;)=b; fori=012,.......nand
uwi_q, v;) =a; ,fori =1,2,.........n,where a; , b; € (L, <)
G
bo by bo ba oo
- . - - -

Since, G, is a strong regular L-fuzzy graph, we have

Lot

a;=k.a;V ajz1 =k fori=1.2,...... n—2,a, =k,wherek € L ---------=-m-mmmemnmm- (1)
bi_1+ N b;= qa;fori=12,...... T =mmmmm i m e 2
TR TR W S —— S (3)
Also(2) = a; < bj_;jand a; < b;,i =1,2,..........,n
= (a; < by,a; < by),(a; < b, a; < by), e .. ,(a, < bp_q1,a, < by)
= (a; < by),(ay,a, < by),(a, < by, a3 < by), ... ... ,(@n_1 < by, a, < by), (a, < by)
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=k < by,a;V aip1 < b, i =12, ........ ,n—1,k < b,.

=>k < by,k < b;,i =12, ....... ,n—1k < b,.

=k < by,bi_1 A bj,i=12,...... , M.

>k< a,fori=12,...... B 4)
Equations (3)and (4) =, a; =k, fori =1,2,........ , M.

Hence, u is a constant function.

Theorem 4.7 : For any strong regular L-fuzzy graph G, = (V, g, u) whose crisp graph G; isacycle, u isa
constant function.

Proof LetV ={ vy,vy, oo, Uy L E(G] ) = { V1V5, VaV3, cev ev vev v v, U1 U, UnVq }
o(w;)=b; fori=12,.......nand (v;, v;41) =a;,fori =1,2,..........n, where

Vpe1 =viand a;,b; € (L, <)

Since, G, is a strong regular L-fuzzy graph, we have

a; =k.a;V aj.q =k, fori=12,...... n—1,wherek € L -------------- -(1)
b\ biz1 = a;, fori=1.2,...... n,since vy = V1, bpypq = by----mmmmmmmmmmeee- 2
(1) = a; <k,i=12, iMoo e 3)
Also(2) > a; < bjand a; £ bj;1,i =1,2,..........,n
= (ay < bj,a; < by),(a; < by,a; < bs), e e ,(a, < b,,a, < b,y =by)
= (a; < by),(aq,a, < by),(ay, a3 < bs), e .. ... ,(p_1,an < by)
=> k< b,a;V aj41 < bis,i =12, ......... n—1
Sk< bk< by i=12 .. n—1
=>k< biA bipq,i=12,...... , M.
=>k< aq,fori=12,...... ) T m 4)
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Equations (3) and (4) =, a; = k,fori =1,2, ...... ... , M.

Hence, u is a constant function.
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