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ABSTRACT 
 

This paper presents a reliable control design technique 

for linear, time-invariant, multi-input multi-output 

(MIMO) systems with degraded actuators and sensors. 

The degradation defined in this paper ranges from 

normal operational conditions to complete failure of 

actuators and sensors. We derive linear matrix inequa-

lity (LMI) conditions ensuring robust stability of the 

system using static state feedback. The potential of the 

proposed technique has been demonstrated by an ex-

ample of three coupled inverted pendulums. 

 

Keywords—linear matrix inequality; static state 

feedback; MIMO; degradation. 

 

I. Introduction 

Conventional feedback control designs for a MIMO 

system may result in instability in the event of the 

degradation of actuators and sensors, even though it 

may be possible to control the system using only the 

surviving functions of actuator and sensor. It is worth 

noting that this condition can occur even if the open 

loop system is stable. It is therefore of interest to 

develop feedback control designs which guarantee 

robust stability despite degradation of actuators and 

sensors. 

There are relatively few methods for design of reliable 

control. Veillette et al [1] develop observer-based 

reliable centralized and decentralized control systems 

provided the failure of actuators and sensors occur 

only within a prespecified subset of the control 

components. In addition, the actuators and sensors are 

subject to either failure or normal operation which 

neglects the possibility of partial degradation. Fujita 

and Shimemura [2] provide necessary and sufficient 

conditions by introducing a class of U-matrices for 

examining system stability against arbitrary feedback-

loop failures in multivariable control systems with a 

stable plant and controller. This condition requires an 

exponential growth in computation as a function of 

plant dimension. Partial failures are not considered. 

For a given stabilizing controller of a plant, 

Vidyasagar and Viswanadham [3] studied the problem 

of designing the second controller such that either 

controller acting alone stabilizes the plant and both 

acting together also stabilize the plant. A computing 

method for the second stabilizing controller which 

involves stable coprime factorizations using the plant 

and the first controller data are established and may 

result in the second controller of high order. Cho et al 

[4] used the same methodology as [3] except that the 

second stabilizing controller is of adaptive controller 

which again ends up with high order. 

In this paper, we design a static state feedback control 

system to tolerate the degradation ranging from 

normal operational condition to complete failure of 

actuator and sensor. The degradation is modeled as a 

multiplicative uncertainty at the plant input or output. 

We accomplish this via diagonal weighting and norm 
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bounded matrices. To simplify the derivation we will 

first develop and prove LMI conditions which tolerate 

sensor or actuator degradation independently. Our 

approach is extended to the simultaneous degradation 

actuators and sensors in the system. 

II. Problem Formulation 

The purpose of this section is to define the framework 

on which our approach of reliable control systems is 

based. The degradation for actuators and sensors will 

be considered separately to simplify the derivation.  

A. Actuator case: 

Actuator case represents the degradation of 

actuators and is shown as follows, 
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where xRn denotes the state of the system, uk Rm is 

the output of the control gain shown in Figure 1. u  

Rm is the input to the plant. u is the uncertainty 

weighting of the control input to the plant. Note that 

pu and qu represent the output and input vectors of 

plant input perturbations. pu
r and qu

r correspond to the 

rth element of vector pu and qu respectively. 

pu = [ pu
1 .... pu

r ... pu
m ]T,        pu

r  R 

qu = [ qu
1 .... qu

r ... qu
m ]T,         qu

r  R 

u = diag ( u
1 .... u

r ... u
m),    u

r   R 

u
r(t) is the real valued unknown bounded uncertainty 

and it is assumed to be time-varying scalar quantity. 

The control signal u(t) can be readily computed as 

u(t) = ( I + u(t)u)uk(t) 

where the I is identity matrix and u = diag (u
1 .... u

r ... 

u
m ),  u

r  R. Since |u
r(t)|  1, i.e. -1  u

r(t)  1, 

the degradation is modeled by a priori weighting u as 

follows. 

(1) u
r = 1 indicates the rth actuator may fail fully. 

(2) u
r = 0 indicates there is no possibility that the rth 

actuator fails partially or fully. 

(3) 0 < u
r < 1 indicates the rth actuator may fail 

partially. 
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Figure 1 Closed Loop System for Actuator Case 

B. Sensor case: 

Sensor case represents the degradation of sensors 

and is written as follows, 
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where s is the uncertainty weighting of the sensor and 

xs denotes sensor output. The definition for ps, qs, s, 

and s are defined in (2.3) in a similar way as in the 

actuator case and can be seen clearly from Figure 2 

where it shows the closed-loop system for sensor 

degradation. 

ps = [ ps
1 .... ps

l ... ps
n ]T, 

qs = [ qs
1 .... qs

l ... qs
n ]T, 

s = diag (s
1 .... s

l ... s
n ), 

s = diag ( s
1 .... s

l ... s
n), 

ps
l R 

qs
l R 

s
l  R 

s
l   R 

 

 

(2.3)

 

 

 

The degraded sensor signal xs(t) can be readily 

represented as 

xs(t) = ( I + s(t)s)x(t) 

where the possibility of full or partial failure of sensors 

is defined in the similar way as in the actuator case 

using variables s and s in place of u and u, 

respectively. 

+

xs

K

 s

x u

ps
 s qs

x Ax Bu 

 
Figure 2 Closed Loop System for Sensor Case 
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C. Actuator and sensor case 

Actuator and sensor case is the case where actuator 

and sensor are simultaneously degraded shown as 

follows, 
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Figure 3 Closed-loop System for  

Actuator and Sensor Case 

The matrices A and B shown in (2.1), (2.2), and (2.3) 

are assumed to be real constant matrices with 

appropriate dimensions. u and s are given a priori 

and represent the uncertainty weighting used to model 

the degradation for actuators and sensors. We define 

u := diag (u
r(t))r=1,...,m,     u

r(t)  R 

s := diag (s
l(t))l=1,...,n,       s

l(t)  R 

where ||u||  1 and  ||s||  1. 

The control problem is to find, if it exists, static state 

feedback that stabilizes the system described in (2.1), 

(2.2), or (2.3).  

III. Controller Synthesis 

In this section we present the main results. Lyapunov 

stability theory is used to establish stability criteria. 

Although there is no trivial method to establish a 

Lyapunov function, by experience, quadratic 

Lyapunov functions, i.e. V() = TL, have been 

proven to be efficient and easily implemented [7]. We 

consider static state feedback, i.e. uk(t) = Kx(t) for the 

actuator case, u(t) = Kxs(t) for sensor case and uk(t) = 

Kxs(t) for combination of actuator and sensor case. 

Theorem 1. Consider the closed-loop system 
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If there exist matrices Q, Y, and M satisfying 

          Q = QT > 0 
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for a given weighting matrix u, then the following 

statements are equivalent, 

(1)  The closed-loop system (3.1) is asymptotically 

stable. 

(2)  (A + BK) is Hurwitz for K = YQ-1. 

Proof. See Appendix A for proof and notation. 

Remark 1. The inequality (3.2) is convex in the matrix 

variables Q, Y, and M. Thus, (3.2) can be readily 

solved by convex optimization techniques. We write a 

feasibility problem 

Find            Q, Y, and M 

Subject to    Q = QT > 0, M > 0, and (3.2). 

Theorem 2. Consider the closed-loop system 
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 (3.3)

If there exist matrices P, W, S and  satisfying 

P = PT > 0,   S = ST > 0,   > 0,   

  P P W S WT 1 0  (3.4)

PA AP W B BW BSB P

P

T T T T
s
T

s

   










 


  1 0 (3.5)

for a given weighting matrix s, then the following 

statements are equivalent. 

(1)  The closed-loop system (3.3) is asymptotically 

stable. 

(2)  (A + BK) is Hurwitz for K = WP-1. 

Proof. See proof for Theorem 3. 
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Remark 2. The matrix inequalities (3.4) and (3.5) are 

inversely coupled through the matrices S and . 

Moreover the inequality (3.4) is not an LMI. Thus, to 

solve theorem 2 simultaneously through the use of 

convex optimization is difficult. However, we may 

still solve the problem using of sequential method that 

we solve for (3.5) first and then verify (3.4).  

Theorem 3. Consider the following closed-loop 

system 
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If there exist matrices P, W, Su, Sx, Ss, , and  

satisfying 

P PT  0 , S Su u
T  0, S Sx x

T  0 , S Ss s
T  0 , 

  > 0,  > 0 
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u

1 0  (3.6) 
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where    u
T

u
, for a given weighting matrix u 

and s, then the following statements are equivalent, 

(1)  The closed-loop system (3.6) is asymptotically 

stable. 

(2)  (A + BK) is Hurwitz for K = WP-1. 

Proof. See Appendix B for proof. 

Remark 3. Normally speaking, the matrix inequalities 

(3.6)-(3.8) should be solved simultaneously. However, 

it is not  possible to solve using convex programming 

due to inversely coupled terms, Ss, Su, Sx, and .  

Thus, we suggest for some given  we solve (3.8) for 

P, W, Sx , Ss, and Su and then verify (3.6) and (3.7). 

IV. Numerical Example 

Consider the system in Figure 3 consisting of three 

coupled inverted pendulums of point masses mi, and 

length li. The pendulums interact via three springs and 

three dampers of stiffness kij and damping bij; i, j = 

1,2,3, and ij. The distances from attached point of 

springs and dampers to the platform baseline are ai. 

The system data are shown in Table 1. Using this 

system, we will demonstrate several examples for 

actuator and sensor degradation. The system dynamics 

for pendulums are written in the general form, 
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k b12 12,
k b23 23,

k b13 13,

u1

u2

u3

21
3

m1 m3

m2

l3l2
l1

a1

a2 a3

   

Figure 3 Three Inverted Pendulums Systems 

Table 1 

m1 m2 m3 b12 b13  b23  k12  k13 k23

1  1  1  1  .51  1  1  .51 1 

a1=a2=a3=0.5, g=10, l1=1, l2=1.2, l3=1.1. 

Initial conditions: 

     1 2 301 011 0 34 0 23 0 29 133         . ,  . , . ,  . , . ,  . .     1 2 3  

We will first demonstrate actuator degradation. The 

weighting is chosen u=diag(1, 0.1, 0.28) which 

represents the possibility of degradation for each 

actuator. For instance, actuator for m1 may fail during 

its operation, actuators for m2 and m3 are subject to 

10% and 28% variation of its nominal operation signal. 

We will demonstrate nominal operation of actuators, 

i.e. u = 0, at time t  0.5. Then, we will show the case 

where the actuator for m1 is subject to fail and the 

actuator for m2 and m3 are partial failure. Detail 

conditions are shown in Table 2. 

Table 2 

time  m1  m2  m3 

0  t < 0.5  S1  S2  S3 



@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 1 | Issue – 5 Page:94

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470
 

 

0.5  t < 2.5  failure  0.9*S2  0.72*S3 

2.5  t  6  2*S1  1.1*S2  1.28*S3 

where Si = the nominal operation control signal of 

actuator associated with each mass. The computed 

gain followed by Theorem 1 is 

K 
   

















-44.6423 -11.3417 2.7025 -1.3565 1.2500 -0.7005

-362.5824 -93.3584 -2.9357 -17.3282 -4.3807 -10.9399

-25.4243 7 1539 4 5474 16523 358191 10 0032. . . . .
 

eigenvalues of (A+BK) = [-45.2643  -3.6514  -

1.13161.6097i -2.13062.1394i]. The simulation 

results are shown in Figure 4 and 5 for plant outputs 

and control signals. It is noticed that the control signal 

for m1 decays relatively fast at the beginning of 

operation and then is close to zero as shown in Figure 

4. Thus, even though the actuator #1 fails at time t  

0.5 sec, it has very little effect to the system. Since the 

actuator signals for m1 varies from twice of its nominal 

value to zero (which is used to represent the failure of 

the actuator), one possible way to accommodate such 

a large variation is simply to make the resultant signal 

as small as possible such that it has the least effect on 

the system. The jumps shown in Figure 5 are due to 

the switching at time t = 0.5 sec instantaneously. If 

there are two actuators in the system subject to the 

possibilities of failure, e.g. u=diag(1, 1, 0), we are not 

able to find feasible solutions for the Theorem 1. In 

other words, it is not possible to maintain stability of 

the system when two actuators failures in the system.  

 

 
Figure 4 Outputs of Three Pendulums 

For the sensor degradation case, the weighting is 

chosen s = diag(0.4, 0.5, 0.4, 1, 0.5, 1) which 

represents the possibility of 

 

 
Figure 5 Control Signals 

degradation for each sensor. The velocity sensor of m1 

is subject ++to 50% variation, while the position 

sensor has 40% variation. The velocity sensors of m2 

and m3 are subject to the possibility of failure, while 

the corresponding position sensors have 40% and 50% 

variations. We will demonstrate the extreme case, 

which is shown in Table 3. The computed gain 

followed by Theorem 2 is 

K 
  

















-29.7241 -8.2556 1.0801 -1.0596 1.2811 0.3397

0.5669 - 0.9255 - 29.5401 - 8.0746 0.9343 0.9577

1.2812 0 2544 12151 0 9838 29 3428 8 3852. . . . .
 

eigenvalues of (A+BK) = [-6.8259  -2.4785 -5.8912 -

3.0449 -3.0952 -6.2916]. The simulation results are 

shown in Figure 6 and 7. The sudden jumps in Figure 

7 show the instantaneous switching at time t = 0.5 sec. 

The following results are observed from simulation. 

The system will oscillate if we fail three velocity 

sensors. Since the damping control signals given by 

velocity sensor are zero, the occurrence of oscillation 

is not unexpected. 

Table 3 

time m1 m2 m3 

 Pos Vel Pos Vel Pos Vel

0 t 

 .5 

1.4*

S1p 

1.5*
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2* 

S3v

0.5 

t5 
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F 0.5*
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F 

Pos = position sensor, Vel = velocity sensor, S with all 
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subscripts = the nominal operational signal associated 

with each sensor (subscript p = position sensor, 

subscript v = velocity sensor). F = failure. 

 

Figure 6 Outputs of Three Pendulums 

 
Figure 7 Control Signals 

V. Conclusions 

We ensure the stability of a MIMO system by 

establishing LMI conditions when the system is 

subject to degradation of actuators and sensors. The 

theory developed in Section 3 is demonstrated by three 

inverted coupled pendulums, which show the system 

can be stabilized.  
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Appendix A 

Proof.  

We consider the quadratic Lyapunov function V(x)= 

xTLx. The consideration of perturbation will be 

incorporated in the derivative of Lyapunov function 

for stabilization of overall system. We have 

 ( ) ( )
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V x q q p pr u
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u
r

u
r T

u
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for some r>0. Substituting (2.1) into (A.1) and 

rearranging the expression, we obtain 
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where the =diag(1, 2, ..., m). (A.2) is equivalent to 
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Expanding by Schur complement and letting Q = L-1, 

Y = KQ, and M = -1,  we may have 
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Y M
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This completes the proof. 

Appendix B 

Proof.  

We need the following lemma used in the proof. 

Lemma B ([8]) For any matrices M and N with 

appropriate dimensions, we have  

M N N M M SN N S MT T T T   1  

for any positive-definite symmetric matrices S.  

We consider the quadratic Lyapunov function V(x)= 

xTLx. The system perturbation will be incorporated in 

the derivative of Lyapunov function for stabilization 

of overall system. We have 
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for some r>0 and r>0. Substituting (3.6) into (B.1) 

and rearranging the expression, we obtain 
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where the =diag(1, 2, ..., m) and =diag(1, 2, ..., 

m). Use of Lemma B we have 
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.  Thus,  
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Therefore, we require  
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Multiplying P = L-1 on both side of (B.4) and applying 

Schur complement, we obtain 
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where W=KP. Multiplying P on both side of (B.5) we 

have  

     P P W S S WT
x s ( )1 1 0  (B.8)

This completes the proof. 
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