

Fixed Points in Continuous Non Decreasing Functions

Dr. M. RamanaReddy

Associate Professor of Mathematics Sreenidhi Institute of Science and Technology, Hyderabad, India

ABSTRACT

The purpose of this paper is to establish a common fixed point theorem is established in G-complete fuzzy metric spaces in the sense of George and Veeramani besides discussing some related problems.

Keywords— Continuous t-norm, Fuzzy metric space, G- Cauchy sequence, Housdroff and first countable

INTRODUCTION

Gregori and Sapena [1] introduced the notion of fuzzy contractive mapping and proved fixed point theorems in varied classes of complete fuzzy metric spaces in the senses of George and Veeramani [2], Kramosil and Michalek [3] and Grabiec's [4]. Soon after, Mihet [5] proposed a fuzzy fixed point theorem for (weak) Banach contraction in M-complete fuzzy metric spaces. In this continuation, Mihet [6,7] further enriched the fixed point theory for various contraction mappings in fuzzy metric spaces besides introducing variants of some new contraction mappings such as: Edelstein fuzzy contractive mappings, fuzzy ψ -contraction of (ϵ , λ) type etc. In the same spirit, Qiu et al. [8,9] also obtained some common fixed point theorems for fuzzy mappings under suitable conditions. In 2010 Pacurar and Rus in [10], introduced the concept of cyclic ϕ -contraction and utilize the same to prove a fixed point theorem for cyclic ϕ -contraction in the natural setting of complete metric spaces besides investigating several related problems in respect of fixed points.

In this paper the notion of cyclic weak ϕ -contraction is introduced in a fuzzy metric space. Furthermore, fixed point theorem is established in G-complete fuzzy metric spaces in the sense of George and Veeramani besides discussing some related problems.

I. PRELIMINARIES

Definition -1.1 A binary operation $\star: [0,1] \times [0,1] \rightarrow [0,1]$ is continuous $t - \text{norm if } \star$ is satisfying the following conditions:

- 1.1 (i) \star is commutative and associative.
- 1.1 (ii) * is continuous.

1.1 (iii) $a \star 1 = a$ for all $a \in [0,1]$.

1.1 (iv) $a \star b \leq c \star d$ whenever $a \leq c$ and $b \leq d$, For $a, b, c, d \in [0,1]$.

Definition – 1.2 A triplet (X, M,*) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t - norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following condition for all x, y, z, s, t > 0,

 $\begin{array}{l} 1.2 \ (FM-1) \ M \ (x,y,t) \ > \ 0 \\ 1.2 \ (FM-2) \ M \ (x,y,t) \ = \ 1 \ \text{if and only if } x \ = \ y. \end{array}$

1.2 (FM - 3) M (x, y, t) = M (y, x, t)

1.2 (FM - 4) M (x, y, t) \star M (y, z, s) \leq M (x, z, t + s)

1.2 (FM – 5) M (x, y, \bullet) : (0, ∞) \rightarrow (0,1] is continuous.

Then M is called a fuzzy metric on X. The function M(x, y, t) denote the degree of nearness between x and y with respect to t.

Example 1.3 Let (X, d) be a metric space. Define $a * b = \min \{a, b\}$ and

$$M(x, y, t) = \frac{t}{t + d(x, y)}$$

For all $x, y \in X$ and all t > 0. Then (X, M, \star) is a Fuzzy metric space. It is called the Fuzzy metric space induced by d.

We note that, M(x, y, t) can be realized as the measure of nearness between x and y with respect to t. It is known that $M(x, y, \cdot)$ is non decreasing for all $x, y \in X$. Let $M(x, y, \star)$ be a fuzzy metric space for t > 0, the open ball

$$B(x, r, t) = \{y \in X: M(x, y, t) > 1 - r\}.$$

Now, the collection $\{B(x, r, t): x \in X, 0 < r < 1, t > 0\}$ is a neighborhood system for a topology τ on X induced by the fuzzy metric M. This topology is Housdroff and first countable.

Definition 1.5 A sequence $\{x_n\}$ in a fuzzy metric space (X, M, \star) is said to be a converges to x iff for each $\varepsilon > 0$ and each t > 0, $n_0 \in N$ such that $M(x_n, x, t) > 1 - \varepsilon$ for all $n \ge n_0$.

Definition 1.6 A sequence $\{x_n\}$ in a fuzzy metric space (X, M, \star) is said to be a G- Cauchy sequence converges to x iff for each $\varepsilon > 0$ and each t > 0, $n_0 \in N$ such that $M(x_m, x_n, t) > 1 - \varepsilon$ for all $m, n \ge n_0$.

II. MAIN RESULTS

Theorem – 2.1 Let (X, M, \star) be a fuzzy metric spaces, $A_1, A_2, ..., A_m$ be closed subsets of X and Y = $\bigcup_{i=1}^{m} A_i$ be G – complete. Suppose that $\phi: [0, \infty) \to [0, \infty)$ is a continuous non decreasing function with $\phi(r) > 0$ for each $r \in (0, +\infty)$ and $\phi(0) = 0$. If f: Y \to Y satisfying,

$$\left(\frac{1}{M^{2}(fx,fy,t)} - 1\right) \leq \left(\frac{1}{M^{2}(x,fx,t)\star M^{2}(y,fy,t)} - 1\right) - \varphi\left(\frac{1}{M^{2}(x,fx,t)\star M^{2}(y,fy,t)} - 1\right)$$
 2.1(i)

then f has a unique fixed point $z \in \bigcap_{i=1}^{m} A_i$.

Proof: Let $x_0 \in Y = \bigcup_{i=1}^m A_i$ and set $x_n = fx_{n-1}$ $(n \ge 1)$. Clearly, we get $M(x_n, x_{n+1}, t) = M(fx_{n-1}, fx_n, t)$ for any t > 0. Beside for any $n \ge 0$, there exists $i_n \in \{1, 2, ..., m\}$ such that $x_n \in A_{i_n}$ and $x_{n+1} \in A_{i_n+1}$. Then by 4.2.4(i), (for t > 0) we have

$$\begin{split} \left(\frac{1}{M^2(x_n, x_{n+1}, t)} - 1\right) &= \left(\frac{1}{M^2(fx_{n-1}, fx_n, t)} - 1\right) & 2.1(ii) \\ &\leq \left(\frac{1}{M^2(x_{n-1}, fx_{n-1}, t) \star M^2(x_n, fx_n, t)} - 1\right) \\ &- \varphi \left(\frac{1}{M^2(x_{n-1}, fx_{n-1}, t) \star M^2(x_n, fx_n, t)} - 1\right) \end{split}$$

$$\leq \left(\frac{1}{M^2(x_{n-1},x_n,t)\star M^2(x_n,x_{n+1},t)} - 1\right)$$

Which implies that

$$M^{2}(x_{n}, x_{n+1}, t) \ge M^{2}(x_{n-1}, x_{n}, t) \star M^{2}(x_{n}, x_{n+1}, t)$$

and hence

$$M(x_{n}, x_{n+1}, t) \ge M(x_{n-1}, x_{n}, t) \star M(x_{n}, x_{n+1}, t)$$

For all $n \ge 1$ and so {M(x_{n-1}, x_n, t)} is non decreasing sequence of positive real numbers in (0,1].

Let $S(t) = \lim_{n \to +\infty} M^2(x_{n-1}, x_n, t)$. Now we show that S(t) = 1 for all t > 0. If not, there exists some t > 0 such that S(t) < 1. Then, on making $n \to +\infty$ in4.2.4(ii), we obtain

$$\left(\frac{1}{S(t)}-1\right) \leq \left(\frac{1}{S(t)}-1\right) - \left(\varphi + \left(\frac{1}{S(t)}-1\right)\right)$$

Which is a contradiction. Therefore $M^2(x_n, x_{n+1}, t) \to 1$ as $n \to +\infty$. Now for each positive integer p we have

$$M(x_n, x_{n+p}, t) \ge M(x_n, x_{n+1}, \frac{t}{p}) \star M(x_{n+1}, x_{n+2}, \frac{t}{p})$$
$$\star \dots \star M(x_{n+p-1}, x_{n+p}, \frac{t}{p})$$

It follows that $\lim_{n \to +\infty} M(x_{n-1}, x_n, t) \ge 1 \star 1 \star \dots \star 1 = 1$

So that $\{x_n\}$ is a G-Cauchy sequence. As Y is G-complete, then there exists $y \in Y$ such that $\lim_{n \to +\infty} x_n = y$. It follows that the iterative sequence $\{x_n\}$ has a infinite numbers of terms in A_i for each i = 1, 2, ..., m. Since Y is G-complete, for each A_i , i = 1, 2, ..., m one can exists a subsequence of $\{x_n\}$ that converges to y. By virtue of the fact that each A_i , i = 1, 2, ..., m is closed, we conclude that $y \in \bigcap_{i=1}^m A_i \neq \phi$. Obviously, $\bigcap_{i=1}^m A_i$ is closed and G – complete. Now we consider the restriction of f on $\bigcap_{i=1}^m A_i$, i.e. $f|\bigcap_{i=1}^m A_i : \bigcap_{i=1}^m A_i \to \bigcap_{i=1}^m A_i$ thus $f|\bigcap_{i=1}^m A_i$ has a unique fixed point in $\bigcap_{i=1}^m A_i$, say z, which is obtained by iteration form the starting point $x_0 \in Y$. To this end, we have show that $x_n \to z$ as $n \to \infty$, then, by 4.2.1(i), we have

$$\left(\frac{1}{M^{2}(x_{n},z,t)}-1\right) \leq \left(\frac{1}{M^{2}(x_{n-1},x_{n-2},t)}-1\right) - \varphi \left(\frac{1}{M^{2}(fz,z,t)}-1\right)$$

Now letting $n \to +\infty$, we get

$$\left(\frac{1}{\mathsf{M}^2(\mathsf{y},\mathsf{z},\mathsf{t})}-\ 1\right)\ \leq\ \left(\frac{1}{\mathsf{M}^2(\mathsf{y},\mathsf{y},\mathsf{t})}-\ 1\right)\ -\ \varphi\ \left(\frac{1}{\mathsf{M}^2(\mathsf{z},\mathsf{z},\mathsf{t})}-\ 1\right)$$

Which is contradiction if M(y, z, t) < 1, and so, we conclude that z = y. Obviously z is the unique fixed point of f.

Theorem - 2.2 Let (X, M, \star) be a fuzzy metric spaces, $A_1, A_2, ..., A_m$ be closed subsets of X and $Y = \bigcup_{i=1}^{m} A_i$ be G - complete. Suppose that $\phi: [0, \infty) \to [0, \infty)$ is a continuous non decreasing function with $\phi(r) > 0$ for each $r \in (0, +\infty)$ and $\phi(0) = 0$. If f: $Y \to Y$ satisfying,

$$\begin{split} \left(\frac{1}{M^{2}(fx,fy,t)} - 1\right) &\leq \left(\frac{1}{M^{2}(x,fx,t)\star M^{2}(y,fy,t)} - 1\right) \\ &-\varphi\left(\frac{1}{M^{2}(x,fx,t)\star M^{2}(y,fy,t)} - 1\right) \qquad 2.2(i) \end{split}$$

and there exists a sequence $\{y_n\}$ in Y such that $M(y_n, fy_n, t) \to 1$ as $n \to +\infty$ for any t > 0, then $y_n \to z$ as $n \to +\infty$, provides that the fuzzy metric M is triangular, and z is the unique fixed point of f in $\bigcap_{i=1}^{m} A_i$.

Proof: By Theorem -4.2.4 we have that $z \in \bigcap_{i=1}^{m} A_i$ is the unique fixed point of f. Now, from the triangular inequality of M and 4.2.2(i), we have

$$\begin{split} \left(\frac{1}{M^{2}(y_{n},z,t)}-1\right) &\leq \left(\frac{1}{M^{2}(y_{n},fy_{n},t)}-1\right) + \left(\frac{1}{M^{2}(fy_{n},fz,t)}-1\right) \\ \left(\frac{1}{M^{2}(y_{n},z,t)}-1\right) &\leq \left(\frac{1}{M^{2}(y_{n},fy_{n},t)}-1\right) \\ &+ \left(\frac{1}{M^{2}(y_{n},fy_{n},t)\star M^{2}(fz,z,t)}-1\right) \\ &- \varphi\left(\frac{1}{M^{2}(y_{n},fy_{n},t)\star M^{2}(fz,z,t)}-1\right) \end{split}$$

Which is equivalent to

$$\left(\tfrac{1}{\mathsf{M}^2(y_n, z, t)} - \ 1 \right) \ \leq \ \left(\tfrac{1}{\mathsf{M}^2(y_n, fy_n, t)} - \ 1 \right)$$

From the last inequality we conclude that

$$\begin{split} &\lim_{n\to+\infty}\varphi\left(\frac{1}{M^2(y_n,z,t)}-1\right)=0\\ &\lim_{n\to+\infty}\left(\frac{1}{M^2(y_n,fy_n,t)}-1\right)=0\;. \end{split}$$

Since

then, by the property of ϕ , we conclude that $M(y_n, z, t) \to 1$, which is equivalent to say that $y_n \to z$ as $n \to +\infty$.

Theorem - 2.3 Let (X, M, \star) be a fuzzy metric spaces, $A_1, A_2, ..., A_m$ be closed subsets of X and Y = $\bigcup_{i=1}^{m} A_i$ be G - complete. Suppose that $\phi: [0, \infty) \to [0, \infty)$ is a continuous non decreasing function with $\phi(r) > 0$ for each $r \in (0, +\infty)$ and $\phi(0) = 0$. If f: Y \to Y satisfying,

$$\left(\frac{1}{M^2(fx, fy, t)} - 1 \right) \le \left(\frac{1}{M^2(x, fx, t) \star M^2(y, fy, t)} - 1 \right) - \varphi \left(\frac{1}{M^2(x, fx, t) \star M^2(y, fy, t)} - 1 \right) 2.3(i)$$

and there exists a sequence $\{y_n\}$ in Y such that $M(y_{n+1}, fy_n, t) \to 1$ as $n \to +\infty$ for any t > 0, then there exists $x \in Y$ such that $M(y_n, f^n x, t) \to 1$ as $n \to +\infty$ provides that the fuzzy metric M is triangular.

Proof : Once again, according to the proof of Theorem – 4.2.4, we observe that for any initial point $x \in Y, z \in \bigcap_{i=1}^{m} A_i$ is the unique fixed point of f. Moreover, for any t > 0, $0 < M(y_n, z, t) < 1$ and $0 < M(y_{n+1}, z, t) < 1$. Set y as a limit of a convergent sequence $\{y_n\}$ in Y. Now, from the triangularity of M and 4.2.6(i), we have

$$\begin{split} \left(\frac{1}{M^2(y_{n+1},z,t)} - 1\right) &\leq \left(\frac{1}{M^2(y_{n+1},fy_n,t)} - 1\right) + \left(\frac{1}{M^2(fy_n,fz,t)} - 1\right) \\ &\left(\frac{1}{M^2(y_n,z,t)} - 1\right) \leq \left(\frac{1}{M^2(y_n,fy_n,t)} - 1\right) \\ &+ \left(\frac{1}{M^2(y_n,fy_n,t)\star M^2(z,fz,t)} - 1\right) \\ &- \varphi\left(\frac{1}{M^2(y_n,fy_n,t)\star M^2(z,fz,t)} - 1\right) \end{split}$$

Then, on making $n \to +\infty$ in the above inequality, we get

$$\begin{pmatrix} \frac{1}{M^{2}(y,z,t)} - 1 \end{pmatrix} \leq \left(\frac{1}{M^{2}(y,fy,t) \star M^{2}(z,fz,t)} - 1 \right)$$

$$- \varphi \left(\frac{1}{M^{2}(y,fy,t) \star M^{2}(z,fz,t)} - 1 \right)$$
 2.3(ii)

Clearly 4.2.6(ii) is true if and only if $\phi\left(\frac{1}{M^2(y,z,t)}-1\right) = 0$. By the property of the function ϕ , must be $\left(\frac{1}{M^2(y,z,t)}-1\right) = 0$ and thus y = z. Consequently, we have $M(y_n, f^nx, t) \to 1$ as $n \to +\infty$.

REFERENCES

- Gregori V., A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 125 (2002) 245-253. http://dx.doi.org/ 10.1016/S0165-0114(00)00088-9.
- George A., Veeramani P., On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994) 395-399. http://dx.doi.org/10.1016/0165-0114(94)90162-7
- Kramosil O. and Michalek J., Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 336-344.
- Grabiec M., Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27 (1988) 385-389. http://dx.doi.org/10.1016/0165-0114(88)90064-4.
- Mihet D., A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems 144 (2004) 431-439. http://dx.doi.org/10.1016/ S0165-0114(03)00305-1.

- 6) Mihet D., On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems 158 (2007) 915-921. http://dx.doi.org/10.1016 /j.fss.2006.11.012.
- 7) Mihet D., A class of contractions in fuzzy metrics spaces, Fuzzy Sets and Systems 161 (2010) 1131-1137. http://dx.doi.org/10.1016 /j.fss.2009.09.018.
- Qiu D., Shu L., Supremum metric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings, Inform. Sci. 178 (2008) 3595-3604. http://dx.doi.org/10.1016/j.ins.2008.05.018.
- Qiu D., Shu L., Guan J., Common fixed point theorems for fuzzy mappings under φ-contraction condition, Chaos Solitons Fractals 41(2009) 360-367.

http://dx.doi.org/10.1016/j.chaos.2008.01.003

 Pacurar M., Rus I.A., Fixed point theory for φcontractions, Nonlinear Anal. 72 (2010) 1181-1187. http://dx.doi.org/10.1016/j.na.2009.08.002.