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Abstract:  
This paper presents weight function approach with piece wise polynomial 
interpolation function to determine the stress intensity factors at the 
surface and deepest points of a semi elliptical crack induced at the blade 
mounting locations of the rotor system. Initially, the mathematical model 
representing tapered rotating disc is solved and the equations for radial 
stress are obtained. Using the compatibility conditions, these equations are 
applied to plot the stress distribution at blade mounting locations in steam 
turbine rotor system. In the second part, weight functions with five and six 
terms are derived separately at the surface and the deepest points of semi 
elliptical crack to determine the stress intensity factors. The coefficients of 
these functions are determined assuming piece wise polynomial stress 
distribution along the crack. This weight function approach is applied to a 
semi elliptical crack at blade mounting locations by considering the stresses 
at discrete points of the crack obtained in first part and the stress intensity 
factors (SIFs) are determined. The results obtained are validated with the 
influence coefficient approach. 
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1. INTRODUCTION  
 

The increase in demand for the thermal power 
generation requires effective design of 
components in thermal power plants. One of the 
critical components in the plant is turbine rotor 
and it is subjected to high magnitude of stresses 
which affects its life. The effect of failure of rotor is 
enormous in terms of electricity generation failure 
and economic loss for the plant. Hence in order to 
avoid the interruption of power generation and 
increase the reliability of turbine rotor system, it is 
necessary to perform the analysis of steam turbine 
rotor .The blade mounting location of the rotor is 
critical part where the stress concentration is more 
and increases the probability of development of 
crack. Most of the researchers have concentrated 

on examining the reasons for crack development 
and failure of rotor using microscopic and chemical 
testing on the cracked part.  

Many cylindrical components having 
geometrical discontinuities are subjected to 
dynamic loading. These components may have 
inherent micro cracks. During the operations, 
these cracks may propagate and lead to failure of 
the cylinders. Hence determination of stress 
intensity factors becomes critical in these 
components [1-5]. The effect of geometrical 
discontinuities is studied by a number of 
researchers [6-9]. For transportation of fluids in 
different application, pipes are the critical 
components and are subjected to complex 
loadings. During manufacturing, defects may be 
incorporated in pipes which create initialization of 
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cracks and the probability of failure gets worsened 
due to crack growth and propagation. 

Banaszkiewicz et.al.[10] has analyzed  non-
stationary stresses and fatigue cracking in impulse 
steam turbine rotors and identified the most 
frequent locations of crack appearance. The 
number of cycles to crack initiation has been 
calculated based on the strain amplitudes 
correspond well with the operating experience of 
this type of rotors. Hattingh, D. G. et.al. [11] have 
presented a case study dealing with the 
assessment of cracking observed at steam turbine 
blade attachment grooves. The work outlined a 
fracture mechanics analysis of in service cracking 
observed  and aimed at assessing critical defect 
sizes to support either replacement or repair. 
Banaszkiewicz, M. et.al. [12] in their work 
presented root cause analysis of steam turbine 
rotor blade groove cracking. The blades in the 
failed rotor are removed and it was subjected to 
metallographic and non destructive testing like 
magnetic particle testing. Based on the analysis 
performed, it was decided to repair two discs using 
the process of weld built up. The stress fields in the 
blade grooves were calculated and the possibility 
of cracking was assessed as stress corrosion. They 
proposed change in the blade groove geometry to 
ensure the tolerance to the stress corrosion 
cracking. Barella, S. et.al. [13] have explored the 
origin of the fatigue phenomenon in relation to the 
blade fixing method and its groove in the turbine 
rotor. The failed rotor was cut to open the cracked 
surface and the fractured surface analysis was 
conducted.SEM analysis along with energy 
dispersive spectroscopy was performed for 
chemical analysis. To perform the metallographic 
analysis, optical microscope was used for 
microscopic samples. It was suggested to perform 
early stage nondestructive testing methods while 
the turbine rotor is in operation to avoid the rotor 
failure. Nikravesh, M. Y. et.al.[14] analyzed the 
propagation of a circumferential crack at three 
points of the turbine rotor . Through the obtained 
results, a crack front shape is achieved which can 
be used in rotor vibration analysis. Vasovic I. et. al. 
[15] have focused on the stress analysis and the 
determination of fracture mechanics parameters in 
low pressure (LP) turbine rotor discs and on 
developing analytic expressions for stress intensity 
factors at the critical location of LP steam turbine 
disc. They have used conventional finite elements 
to determine stress intensity factors. Shlyannikov, 
V. N. et. al. [16] determined the elastic-plastic 
fracture mechanics parameters, full-size stress-

strain state analysis of the turbine disk was 
performed for semi-elliptical cracks under startup 
loading conditions. Prasad K. et.al. [17] performed 
experimental analysis on the forged turbine disc to 
study the effect of directionality on the crack 
growth behavior and observed that  a higher crack 
growth rate in radial direction than tangential 
direction in a forged turbine disc made of a super 
alloy. Hu  D. et.al. [18] discussed the possible 
microscopic mechanisms to explain the grain size 
effect on the FCG behaviors based on crack 
deflection and blockage, and the crack closure 
inducements involving plasticity. Hu D. et.al. 
[19]conducted tests on tension specimens and 
investigated the fatigue crack growth 
characteristics using stochastic fatigue crack 
growth model. Based on the experimental results, 
they performed probabilistic analysis on the 
damage tolerance of the turbine disk. 

From the literature review , it is observed that 
most of the researchers have studied the effect of 
semi elliptical crack on different components like 
cylinders , pipes , plates , pressure vessels, rotors 
etc. using different  approaches . Some of the 
researchers had concentrated on the effect of 
crack in turbine rotor. But the all the researchers 
have concentrated only on the experimental 
analysis of specimen at the failure zone of the 
turbine rotor after it failed. The objective of this 
paper is to present analytical approach to 
investigate the stress intensity factors of semi 
elliptical crack in the steam turbine rotor system. 

2. MODELLING OF TAPERED ROTATING DISK 

The stresses induced in rotors are three 
dimensional as they are of complex geometry. 
Hence in order to obtain the meaningful results, 
there is a need to have some assumption so that 
these assumptions simplify the complexity of the 
problem and lead to closed form solutions. One 
assumption that can be made is the axial symmetry 
with reference to the geometrical shape and also 
forces acting. Even though the symmetry related to 
geometry may not be justified completely, but the 
effect of disk uniformities can be considered later 
as localized effect .Another assumption that can be 
introduced is planes stress, if the dimensions along 
the axial direction are not too large. This type of 
rotating member is called as thin disc. With this 
assumption, the loads acting are considered on the 
plane xy and the stresses acting along the z 
direction can be considered as zero and the stress 
state is plane. 
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The general governing differential equation 
Eq.(1) which represents a rotating disc along the 
radius is   
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For a conical disc as shown in Fig. 1, 
 t=t0(1-k)  
where t0 is the imaginary disc thickness at the 

axis, k is dimensionless variable representing 
radius r/R 

 

Fig. 1. Tapered rotating disc 

 
To derive the standard equation for 

displacement field of a disc of varying thickness, 
the above relation is introduced in equation along 
with its derivatives w.r.t. t. and the simplified 
model is given in Eq.(2):  
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The solution of the above differential equation 
gives the radial displacement and the radial and 
tangential stresses induced given in Eq. (3) 
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To determine the constants A and B, four 
different cases i.e. disc subjected to radial stress at 
inner radius, at outer radius, at inner and outer 
radii and only centrifugal load are considered and 
the expressions for stresses induced and radial 
displacement in the disc are determined. 

3. STRESSES IN STEAM TURBINE ROTOR 

Using the concept of superposition, the 
equations for applied to determine the stresses 
induced at blade mounting locations of a steam 
turbine rotor. The mechanical component as 
shown in Fig. 2 is the axisymmetric plane of a 
steam turbine rotor disc with radii at different 
sections as a1, a2, a3, a4 and a5. The thicknesses at 
the corresponding sections are b1, b2, b3, b4 and b5. 
The disc rotates with angular velocity of 2600 rpm.  
The surface forces acting at radii a1, a2, a4 and a5 
are considered as zero and the only surface force 
considered is at radii a3. This force is the 
centrifugal force due to the rotation of the blade. 
Using the above equations derived, the stresses as 
well as the radial displacement are determined. 

 
Fig. 2. Blade mounting location of turbine. rotor 

 
To analyze this problem, first it is necessary to 

determine the stresses at radii a1, a2, a3 and a4 
which are designated as σa1, σa2, σa3 and σa4. Hence 
there are four unknown stresses which are to be 
determined. For this the compatibility equations 
for radial displacement are considered i.e. at each 
radius, the radial displacement of the outer edge 
of inner part is equal to the radial displacement of 
inner edge of outer part. Again principle of 
superposition is used to determine the radial 
displacement at each interface. 

At interface A  of radius a1, the radial 
displacement considering the interface A on zone 1 
equated with  the radial displacement considering 
the same interface A on zone 2 to determine a 
linear equation with unknowns σa1 and σa2. The 
radial displacement of interface A considering it on 
zone 1 is equal to the sum of two contributions 
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determined at radius a1 ie radial displacement due 
to centrifugal force of zone 1 and stress σa1.  

The radial displacement of the same interface A 
considering it on zone 2 is equal to the sum of 
three contributions again determined at radius a1 
i.e. radial displacement due to centrifugal force on 
zone 2, stress σa1 and stress σa2. Applying the same 
compatibility condition at the remaining interfaces, 
four linear equations are obtained. These 
equations are solved and the stresses σa1, σa2, σa3 
and σa4 at the interfaces A, B, C and D are 
determined. The variation of radial stress the 
radius is shown in Fig. 3.  

 

 
Fig. 3. Variation of radial stress 

From the radial stress variation shown in Figure 
3, it is observed that the radial stresses induced 
are relatively higher with the consideration of 
blade rotation centrifugal force. Especially at the 
blade mounting locations, there is an instant 
increase in the radial stress by almost 4.5 times. 
This indicates the probability of Mode I type crack 
formation at this location. Hence, a semi elliptical 
crack is considered at the blade mounting location 
and the weight function approach is applied to 
determine the SIFs. 

4. WEIGHT FUNCTION APPROACH WITH PIECE 
WISE POLYNOMIAL FUNCTION 

Whenever cracks are subjected to arbitrary 
stress distribution, to evaluate the stress intensity 
factor, the weight function method is widely used. 
The high efficiency of this method is that the 
weight function depends only on the geometry of 
the crack. Once the weight functions are derived, 
then Mode I SIF can be determined using Eq. (4) 
given. 
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where σr is the arbitrary stress distribution 
along the crack, m(x,a) is Mode I weight function 

and a is the crack depth , x is the distance from the 
surface towards the crack tip. In the current 
problem, two different weight functions are 
assumed for surface and the deepest points.  

A polynomial equation is used to represent the 
actual stress distribution along the crack length. 
The stresses at discrete points are obtained using 
the analytical approach given in the earlier section. 
The actual stress distribution is divided into n 
number of intervals and the variation of stress 
between two arbitrary discrete points xi and xi+1  is 
assumed as linear variation  
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where Ai is the constant representing the actual 
stress distribution, Bi is the coefficient representing 
the actual stress. 

To determine the stress intensity factors, 
weight functions with five and six terms are 
considered separately and the corresponding 
equations are derived. 

The five term weight function considered at the 
deepest point is given by Eq.(5). 
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       The corresponding stress intensity factor is 
given by Eq. (6) 
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To determine the weight function coefficients, 

influence coefficients for the SIF are used. The 
stress intensity factor in terms of influence 
coefficients is given by  
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The above equations along with the pure 
uniform, linear, quadratic and cubic stress 
distributions gives four linear equations and the 
solution of these four linear equations gives the 
four coefficients MD1 , MD2, MD3 and MD4 given by 
set of following equations. 

 1 0 1 2 3

512
32 384 972 660

352
DM G G G G

Q


       

2 0 1 2 3

945 21735 17325
6615 54

4 8 42
DM G G G G

Q

  
     

 

 3 0 1 2 3

512
480 5280 12420 7920

72
DM G G G G

Q


     

4 0 1 2 3

1155 24255 17325
6930 33

4 8 42
DM G G G G

Q

  
     

 

 The five term weight function considered 
at the surface  point is given by Eq.(7). 
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where Mi are the weight function coefficients 
which depend on the geometry of the crack and 
the stress intensity factor is given by Eq. (8) 
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To determine the weight function coefficients 
for the surface point, the same procedure adopted 
for the deepest point is used and the solution of 
four linear equations gives the coefficients 
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The six term weight function considered at the 

deepest point and surface points are  given by 
Eq.(9) and Eq.(10). 
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Using the same procedure used for five term 
weight function ,the equations for the coefficients 
are derived and given below. 
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5. STRESS INTENSITY FACTORS AT BLADE 
MOUNTING LOCATIONS 

From the observation of the radial stress 
distribution, the probability of crack formation is 
high at the blade mounting location. Hence, a semi 
elliptical crack is modelled as shown in Fig. 4 and 
the SIFs are calculated using the above 
approaches. The SIFs for different crack depth 
ratios of 0.2 to 1 are shown in Fig. 5 and Fig. 6 for 
the surface and the deepest point with five term 
weight function and Fig. 7 and Fig. 8 for the surface 
and the deepest point with six term weight 
function respectively. 

 
 
 
 
 
 
 
 

Fig. 4. Semi elliptical crack at blade mounting location 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Variation of SIF at the surface point using five 
term weight function 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Variation of SIF at the deepest point using five 
term weight function 
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The SIF obtained using five term and six term 
weight function approach are validated with 
influence coefficient approach [5]. The SIFs at the 
surface and the deepest point using influence 
coefficient approach are presented in Fig. 9 and 
Fig. 10 
 

 
 
 

 
 

 
The difference between five term and six term 

weight functions is presented in Table 1 and Table 
2 for surface and deepest points. The accuracy 
improved for the proposed method w.r.t . the 
influence coefficient approach is presented in 
Table 3 and Table 4. 

 
Table 1 . Difference (%) in SIF at surface point obtained 
between five term and six term weight function 

a/t 
a/c 

1 0.8 0.6 0.4 0.2 

0.04 0.202 0.400 0.319 0.415 0.269 

0.184 0.514 0.609 0.394 0.769 0.815 

0.328 0.425 0.308 0.488 0.491 0.501 

0.472 0.263 0.256 0.304 0.208 0.337 

0.616 0.417 0.316 0.385 0.423 0.445 

0.76 0.252 0.224 0.222 0.202 0.216 

0.904 0.303 0.231 0.210 0.239 0.138 

1 0.181 0.122 0.130 0.071 0.012 

 
Table 2. Difference (%) in SIF at deepest point obtained 
between five term and six term weight function 

a/t 
a/c 

1 0.8 0.6 0.4 0.2 

0.04 0.215 0.125 0.235 0.123 0.132 

0.184 0.095 0.124 0.123 0.190 0.125 

0.328 0.014 0.135 0.215 0.231 0.102 

0.472 0.086 0.012 0.096 0.020 0.012 

0.616 0.086 0.758 0.042 0.159 0.126 

0.76 0.239 0.154 0.099 0.179 0.012 

0.904 0.212 0.249 0.321 0.289 0.158 

1 0.132 0.124 0.125 0.046 0.214 

 
 
 

 

 

Fig. 7. Variation of SIF at the surface point 
using six term weight function. 

Fig. 8. Variation of SIF at the deepest point 
using six term weight function.  

 

Fig 10. Stress intensity factor at surface point using 
influence coefficient method 

Fig 9. Stress intensity factor at deepest point using 
influence coefficient method 



D. Kiran Prasad et al. / Applied Engineering Letters Vol.4, No.1, 24-32 (2019) 

 31 

Table 3. Accuracy improved (%) in SIF at surface point 
w.r.t  influence coefficient method 

a/t 
a/c 

1 0.8 0.6 0.4 0.2 

0.04 3.4743 3.6784 3.6625 3.8386 4.2794 

0.184 2.3094 2.0694 2.2430 2.4014 3.2701 

0.328 1.3729 1.4872 1.4502 1.5286 1.7682 

0.472 0.9869 0.9598 1.0164 0.9574 1.2168 

0.616 1.1546 1.0192 1.0921 1.1543 1.2686 

0.76 0.7820 0.7310 0.7089 0.6794 0.7216 

0.904 0.8216 0.7123 0.5645 0.6493 0.4227 

1 0.5721 0.4718 0.4344 0.2634 0.0979 

 
Table 4. Accuracy improved (%) in SIF at deepest point 
w.r.t  influence coefficient method 

a/t 
a/c 

1 0.8 0.6 0.4 0.2 

0.04 1.5678 1.8102 2.3259 0.8512 1.1510 

0.184 2.2629 2.9044 2.6586 2.9450 3.0190 

0.328 3.6585 4.0248 3.7767 3.3516 3.8775 

0.472 4.0011 4.0289 3.9378 3.6370 2.5346 

0.616 3.4399 4.9523 3.8596 3.7667 3.2927 

0.76 3.5677 3.3845 2.4444 2.9107 3.0911 

0.904 2.6164 2.2198 2.4582 3.0288 2.2444 

1 0.9705 0.0864 0.8491 0.5293 0.2043 

 
6. CONCLUSIONS 

The present work is focussed on the analytical 
approach to determine the stress intensity factors 
at blade mounting locations in steam turbine rotor 
system. For this purpose, weight function 
approach is used and the stress intensity factors 
are determined at critical points surface and 
deepest points of semi elliptical crack. Two 
different weight functions with five and six term 
are used in this approach. The variation of SIF for 
crack depth ratio a/t is determined for different 
crack ellipticity ratio a/c values. It is observed that 
as the crack depth ratio increases, the SIF values 
also increases for surface and deepest points. But 
for deepest points at higher crack ellipticity ratios, 
there is marginal decrease in the SIF value at 
higher crack depth ratio. The results obtained are 
compared with the influence approach and it is 
observed that there is improvement in the 
accuracy of the results by considering six term 
weight function. 

REFERENCES 
 
[1] J. Chen, H. Pan, Stress Intensity Factor of 

Semi-Elliptical Surface Crack in a Cylinder with 
Hoop Wrapped Composite Layer. 

International Journal of Pressure Vessels and 
Piping, 110, 2013: 77-81.  

http://doi.org/10.1016/j.ijpvp.2013.04.026  

[2] J. Predan, V. Močilnik, N. Gubeljak, Stress 
Intensity Factors for Circumferential Semi-
Elliptical Surface Cracks in a Hollow Cylinder 
Subjected To Pure Torsion. Engineering 
Fracture Mechanics, 105, 2013: 152-168.  

http://doi.org/10.1016/j.engfracmech.2013.03.033  

[3] M. K. Ramezani, J. Purbolaksono, A. 
Andriyana, S. Ramesh, I. S. Putra, Empirical 
Solutions for Stress Intensity Factors of a 
Surface Crack in a Solid Cylinder Under Pure 
Torsion. Engineering Fracture Mechanics, 193, 
2018: 122-136.  

http://doi.org/10.1016/j.engfracmech.2018.02.015  

[4] X. Y. Zhang X. F. Li, Transient Thermal Stress 
Intensity Factors for a Circumferential Crack in 
a Hollow Cylinder Based on Generalized 
Fractional Heat Conduction. International 
Journal of Thermal Sciences, 121, 2017: 336-
347.  

http://doi.org/10.1016/j.ijthermalsci.2017.07.015  

[5 J. M. Alegre, I. I. Cuesta, Stress Intensity Factor 
Equations for Internal Semi-Elliptical Cracks in 
Pressurized Cylinders. Journal of Pressure 
Vessel Technology, 133 (5), 2011: No.054501. 
http://doi.org/10.1115/1.4002613  

[6] A. R. Shahani, M. M. Shodja, A.  Shahhosseini, 
Experimental Investigation and Finite Element 
Analysis of Fatigue Crack Growth in Pipes 
Containing a Circumferential Semi-Elliptical 
Crack Subjected to Bending. Experimental 
Mechanics, 50 (5), 2010: 563-573.  

http://doi.org/10.1007/s11340-009-9229-6  

[7] A. Zareei, S. M. Nabavi, Calculation Of Stress 
Intensity Factors for Circumferential Semi-
Elliptical Cracks With High Aspect Ratio in 
Pipes. International Journal of Pressure 
Vessels and Piping, 146, 2016: 32-38.  

http://doi.org/10.1016/j.ijpvp.2016.05.008  

[8] D. Li, H. Yang, Y. Lu, Engineering Numerical 
Analysis of SIF and Security Service Evaluation 
on Thin- Walled Pipeline’ S Semi-Elliptical 
Crack in NPS Under Heat-Stress Coupling 
Load. Procedia Engineering, 27, 2012: 1582-
1587.  

http://doi.org/10.1016/j.proeng.2011.12.624  

[9] A. Benhamena, B. B. Bouiadjra, A. Amrouche, 
G. Mesmacque, N. Benseddiq, Three Finite 
Element Analysis of Semi-Elliptical Crack in 
High Density Poly-Ethylene Pipe Subjected to 
Internal Pressure. Materials and Design, 31 
(6), 2012: 3038-3043.  

http://doi.org/10.1016/j.matdes.2010.01.029  

http://doi.org/10.1016/j.ijpvp.2013.04.026
http://doi.org/10.1016/j.engfracmech.2013.03.033
http://doi.org/10.1016/j.engfracmech.2018.02.015
http://doi.org/10.1016/j.ijthermalsci.2017.07.015
http://doi.org/10.1115/1.4002613
http://doi.org/10.1007/s11340-009-9229-6
http://doi.org/10.1016/j.ijpvp.2016.05.008
http://doi.org/10.1016/j.proeng.2011.12.624
http://doi.org/10.1016/j.matdes.2010.01.029


D. Kiran Prasad et al. / Applied Engineering Letters Vol.4, No.1, 24-32 (2019) 

 32 

[10] M. Banaszkiewicz, Numerical Investigations Of 
Crack Initiation in Impulse Steam Turbine 
Rotors Subject to Thermo-Mechanical Fatigue. 
Applied Thermal Engineering, 138, 2017: 761-
773.  

http://doi.org/10.1016/j.applthermaleng.2018.04.099  

[11] D. G. Hattingh, M. N. James, M. Newby, R. 
Scheepers, P. Doubell, Damage Assessment 
And Refurbishment of Steam Turbine 
Blade/Rotor Attachment Holes. Theoretical 
and Applied Fracture Mechanics, 83, 2016: 
125-134.  

http://doi.org/10.1016/j.tafmec.2015.11.001  

[12] M. Banaszkiewicz, A. Rehmus-Forc, Stress 
Corrosion Cracking of A 60MW Steam Turbine 
Rotor. Engineering Failure Analysis, 51, 2015: 
55-68.  

 http://doi.org/10.1016/j.engfailanal.2015.02.015  

[13] S. Barella, M. Bellogini, M. Boniardi, S. 
Cincera, Failure Analysis of A Steam Turbine 
Rotor. Engineering Failure Analysis, 18 (6), 
2011: 1511-1519. 

http://doi.org/10.1016/j.engfailanal.2011.05.006  

[14] M. Y. Nikravesh, M. Meidan Sharafi, Failure of 
a Steam Turbine Rotor Due to Circumferential 
Crack Growth Influenced by Temperature and 
Steady Torsion. Engineering Failure Analysis, 
66, 2016: 296-311.  

[15] I. Vasovic, S. Maksimovic, K Maksimovic, S. 
Stupar, G. Bakic, M. Maksimovic, 

Determination of Stress Intensity Factors in 
Low Pressure Turbine Rotor Discs.  
Mathematical Problems in Engineering, 2014: 
ID 304638. 

http://dx.doi.org/10.1155/2014/304638   

[16] V. N. Shlyannikov, A. P. Zakharov, R. R. 
Yarullin, Structural Integrity Assessment of 
Turbine Disk on a Plastic Stress Intensity 
Factor Basis. International Journal of Fatigue, 
92, 2016: 234-245.  

http://doi.org/10.1016/j.ijfatigue.2016.07.016  

[17] K. Prasad, N. C. Babu, V. Kumar, Effect of 
Frequency and Orientation on Fatigue Crack 
Growth Behavior of Forged Turbine Disc of IN 
718 Superalloy. Materials Science and 
Engineering A, 544, 2012: 83-87.  

http://doi.org/10.1016/j.msea.2012.02.088  

[18] D. Hu, J. Mao, J. Song, F. Meng, X. Shan, R. 
Wang, Experimental Investigation of Grain 
Size Effect on Fatigue Crack Growth Rate in 
Turbine Disc Superalloy GH4169 Under 
Different Temperatures. Materials Science 
and Engineering A, 669, 2016: 318-331.  

http://doi.org/10.1016/j.msea.2016.05.063  

[19] D. Hu, R. Wang, J. Fan, X. Shen, Probabilistic 
Damage Tolerance Analysis on Turbine Disk 
Through Experimental Data. Engineering 
Fracture Mechanics, 87, 2012: 73-82.  

http://doi.org/10.1016/j.engfracmech.2012.03.008 

 

 

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0) 
 

http://doi.org/10.1016/j.applthermaleng.2018.04.099
http://doi.org/10.1016/j.tafmec.2015.11.001
http://doi.org/10.1016/j.engfailanal.2015.02.015
http://doi.org/10.1016/j.engfailanal.2011.05.006
http://dx.doi.org/10.1155/2014/304638
http://doi.org/10.1016/j.ijfatigue.2016.07.016
http://doi.org/10.1016/j.msea.2012.02.088
http://doi.org/10.1016/j.msea.2016.05.063
http://doi.org/10.1016/j.engfracmech.2012.03.008

