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Abstract: The addition of phosphorus is one of the major environmental problems because of its leading 
contribution to the increased eutrophication process of lakes and other natural waters. The eutrophication is 
the process where excessive nutrients in a lake or other body of water usually caused by runoff of nutrients 
(animal waste, fertilizers, and sewage) from the land which causes a dense growth of plant life, the 
decomposition of the plants depletes the supply of oxygen which leads to the death of animal life. Microbial 
process is widely used for the removal of phosphorus from soil and wastewater to avoid eutrophication. The 
most efficient phosphate reducers chosen were namely Bacillus subtilis and Enterobacter aerogenes. The 
Mineral Salt Medium and the carbon sources (glucose, sucrose, lactose and starch) at 0.5% and 0.7% were 
prepared. On the removal of phosphate by Bacillus subtilis and Enterobacter aerogenes it was found that 
the Bacillus subtilis was giving the maximum bacterial growth and was observed to be in lactose 0.107 OD 
at 0.7% concentration for 72th hour. In the case of Enterobacter aerogenes the maximum bacterial growth 
was found to be in sucrose 0.133 OD at 0.7% concentration at 72 hr. The pH change in the medium was 
found to be in both the isolates with different carbon sources but in overall the constant pH was at 7. Among 
the two organisms, Bacillus subtilis showed the maximum removal of phosphate 83% as starch as carbon 
source at 0.5% concentration whereas Enterobacter aerogenes showed 77.4% of phosphate removal at 
0.5% concentration as glucose as carbon source. Therefore, these bacterial isolates can be used in the 
remediation of phosphate contaminated environments. 
Keywords: Mineral Salt Medium; Phosphate reducers; Phosphate removal; Rhizosphere soil. 
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INTRODUCTION 
 

Phosphorus is a naturally occurring element that can be found in the earth’s crust, water and all living 
organisms. Phosphorus is one of 16 elements that are essential for plant growth. Soils in Virginia are 
naturally low in phosphorus and most cropping systems on these soils require supplemental phosphorus to 
maximize their yield potential. Research has documented that applying fertilizer phosphorus increases crop 
growth and yields on soils that are naturally low in phosphorus and in soils that have been depleted through 
crop removal. Crop fertilization represents the greatest use of phosphorus in agriculture today. Excessive 
soil phosphorus is a potential threat to water quality (Cokgor EU et al., 2004).Phosphorus lost from 
agricultural soils can increase the fertility status of natural waters (eutrophication), which can accelerate the 
growth of algae and other aquatic plants.  Phosphorus is usually the nutrient that controls eutrophication of 
fresh waters (Mullan et al., 2002). The USEPA has recommended a limit for controlling eutrophication of 
0.05 ppm for total phosphorus in streams that enter lakes and 0.1 ppm for total phosphorus in flowing 
streams. Acceptable levels of phosphorus in surface runoff from agricultural fields have not been 
established. Numerous water quality problems have been associated with eutrophication.  Algal blooms can 
cause fish kills and may harm wildlife and livestock by reducing the oxygen content of water (anoxia) or 
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through the production of toxins (Reyes et al., 1999). Lakes may become dominated by algae and coarse, 
rapidly-growing fish while high value edible fish, submerged macrophytes and benthic organisms 
disappear. Eutrophication can result in increased cost and difficulty of drinking water purification. Decaying 
algal biomass produces surface scums, odors, and increased populations of insect pests. 
 

Phosphorus - An Overview 
Phosphorus is recognized as one of the major nutrients required by the living organisms involved in 

various physiological processes. However, it can also be considered as pollutant if the concentrations are 
high under specific environmental condition 4 (Malacinski et al.,1967). The addition of phosphorus as 
phosphate ion is one of the most serious problems because of its contribution to the increased 
eutrophication process of lake and other natural waters. The possible entry of this ion into aquatic 
environment is through household sewage water and industrial effluents particularly fertilizers and soap 
industries (Mullanet al., 2001). The main source of phosphorus into the environment includes fertilizers, 
detergents etc. Microbial strategies for the removal of environmental pollutants from waste streams or 
contaminated site can provide an alternative to traditional methods such as incineration or disposal in 
landfills (Usharani et al., 2009). Phosphorus participates in many of the reactions that keep plants and 
animals alive and is essential for all living organisms. All living plants and animals require phosphorus. 
Phosphorus containing compounds are essential for photosynthesis in plants for energy transformations 
and for the activity of some hormones in both plants and animals (Tobin et al., 2007).  They occur in cell 
membranes and calcium phosphate hydroxyapatite, Ca10 (PO4) OH is the principle component of bones 
and teeth. Phosphorous is found in two different forms in soil inorganic and organic phosphorus. 
Inorganic Phosphorus: The main inorganic forms of phosphorus in soil are H2PO4- and HPO4.This is the 
form in which phosphorus is used by plants. However, these ions can also absorb onto the surface (or 
adsorb into) solid matter in the soil. This phosphorus is then unavailable to plants (Aseaet al., 1988).  
Organic Phosphorus: Between 50% and 80% of phosphorus in soil is organic phosphorus. This comes 
from the breakdown of dead plants etc., as phosphorus is found in cell membranes and DNA in living 
organisms. Phosphorus is thus naturally available in the soil (Van Loosdrecht et al., 1997). However, there 
isn't usually enough available for plants to grow well. Phosphorus levels are reduced by animals eating the 
plants then dying elsewhere so that the phosphorus is removed, and also by phosphorus being absorbed 
into soil particles or washed away by excess rain. For this reason phosphate fertilizers are widely used 
(Filipe et al., 2001). 
Inorganic Phosphorus in Soil: Two types of inorganic reactions control the concentration of phosphate 
ions in solution and these are precipitation-dissolution and sorption-desorption processes. Precipitation 
dissolution reactions involve the formation and dissolving of precipitates. Sorption desorption reactions 
involve sorption and desorption of ions and molecules from the surfaces of mineral particles (Keasling et 
al., 1996). The role of biological immobilization-decomposition will be dealt with in the section of organic 
phosphates. The movement of phosphate into plants also influences soil solution concentrations and 
promotes dissolution and desorption reactions. Soils contain a range of crystalline and near-amorphous 
minerals in clay-sized particles (<2 µm diameter). These are combined with an equally wide range of poorly 
characterized organic compounds which modify both the chemical and physical properties of the clays (Kim 
et al., 1998). As a result, much research was done on the reactions between pure samples of individual soil 
components and phosphate solutions. Hydrous iron and aluminium oxides and alumino silicates occur 
widely in soils. They will react with phosphate solutions to produce an isomorphous series of iron and 
aluminium phosphates, strengite-barrandite-variscite AlPO4.2H2O- (AlFe) PO4.2H2O - FePO4.2H2O. While 
these materials have been identified by X-ray diffraction in laboratory experiments they have not been seen 
in natural soils. This was assumed to be due to the very small size of their crystals. 
 

Organic Phosphorus in Soil: It consists largely of carbon, oxygen, hydrogen, nitrogen, sulphur and 
phosphorus. When soils develop or when virgin or arable soils are put under permanent pasture, their 
organic matter content generally increases. While organic nitrogen and sulphur components increase to 
equilibrium values within a relatively short period of time (5-20 years), organic phosphate compounds 
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appear to accumulate for much longer. As a result, the phosphorus content of soil organic matter is much 
more variable than its carbon, nitrogen or sulphur contents. This has led to the suggestion that organic 
phosphates can be divided into two fractions; one in association with carbon, nitrogen and sulphur in soil 
humus and the other as independent organic phosphate compounds. However it is likely that the individual 
organic phosphate compounds identified in extracts are combined into complexes of high molecular 
weights in soils and that a continuum exists over the range of organic phosphate compounds in soils. 
 

Rhizosphere Soil- An Overview 
 The rhizosphere is an environment that the plant itself helps to create and where pathogenic and 
beneficial microorganisms constitute a major influential force on plant growth and health. Microbial groups 
and other agents found in the rhizosphere include bacteria, fungi, nematodes, protozoa, algae and micro 
arthropods. Many members of this community have a neutral effect on the plant, but are part of the complex 
food web that utilizes the large amount of carbon that is fixed by the plant and released into the 
rhizosphere. The microbial community in the rhizosphere also harbors members that exert deleterious or 
beneficial effects on the plant. Microorganisms that adversely affect plant growth and health are the 
pathogenic fungi, bacteria and nematodes, whereas microorganisms that are beneficial include nitrogen-
fixing bacteria (Illmer et al.,1995). The number and diversity of deleterious and beneficial microorganisms 
are related to the quantity and quality of the Rhizosphere deposits and to the outcome of the microbial 
interactions that occur in the Rhizosphere (Kundu et al., 1984). Understanding the processes that 
determine the composition, dynamics and activity of the rhizosphere micro flora has attracted the interest of 
scientists from multiple disciplines and can be exploited for the development of new strategies to promote 
plant growth and health. The rhizosphere environment generally has a lower pH, lower oxygen and higher 
carbon dioxide concentrations Rhizosphere microorganisms produce vitamins, antibiotics, plant hormones 
and communication molecules that all encourage plant growth (Illmeret al., 1992). 
Bacillus subtilis: Bacillus subtilis, also known as the hay bacillus or grass bacillus, is a Gram-
positive, catalase-positive bacterium. B. subtilis is rod-shaped and has the ability to form a tough, 
protective endospore, allowing the organism to tolerate extreme environmental conditions (Zuberet 
al.,1998).Although this species is commonly found in soil, more evidence suggests that B. subtilis is a 
normal gut commensal in humans. A 2009 study compared the density of spores found in soil (~106 spores 
per gram) to that found in human feces (~104 spores per gram). The number of spores found in the human 
gut is too high to be attributed solely to consumption through food contamination (Liuet al., 2007). Soil 
simply serves as a reservoir, suggesting that B. subtilis inhabits the gut and should be considered as a 
normal gut commensal. 
Enterobacter aerogenes: E. aerogenes are smaller, rod-shaped cells that are motile and encapsulated 
compared to others in the same family of Enterobacteriaceae. Enterbacter aerogenes is a gram-negative, 
rod shaped bacterium that contains flagella surrounding its outer surface. Enterobacter are found in the soil, 
water, dairy products and in the intestines of animals as well as humans. They are most frequently found in 
the gastrointestinal tract and are studied in clinical sites in stool samples. The minimum, optimum and 
maximum pH for E. aerogenes replication is 4.4, 6.0-7.0, and 9.0. E. aerogenes is resistant to most 
antibiotics, including chloramphenicol, quinolones and tetracycline (Jeonet al., 2000). 
 

EXPERIMENTAL 
 

Sample Collection: The samples were ordered from Microbial Type Culture Collection (MTCC) and Gene 
Bank, Institute of Microbial Technology, Chandigarh which was isolated from Rhizosphere soil. The 
samples chosen were Bacillus subtilis (8558) and Enterobacter aerogenes (7193). 
Preparation of Inoculum: Nutrient broth was prepared and samples of Bacillus subtilis, Enterobacter 
aerogenes were inoculated separately and incubated for 24th hour. Cells were recovered using 
centrifugation at 10,000 RPM for 15 min under aseptic conditions. After centrifugation the cell concentration 
were adjusted to 0.1 OD and the optical density was checked at 600nm using sterile saline. 
Experimental Study:A Minimal Salt Medium (MSM) was prepared for further analysis of phosphate 
reducers. The media was prepared which contained 0.1g of KH2PO4 with two different concentrations 
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